# Synthesis of tetranuclear heterometallic cluster complexes via condensation of triosmium alkyne complexes $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{R}_{2}\right), \mathrm{R}=\mathrm{Tol}$ and Me , and mononuclear tungsten acetylide complexes $\mathrm{LW}(\mathrm{CO}){ }_{3} \mathrm{C} \equiv \mathrm{CR}^{\prime}, \mathrm{L}=\mathrm{Cp}$ and $\mathrm{Cp}^{*}, \mathrm{R}^{\prime}=\mathrm{Ph}$ and ${ }^{\mathrm{t}} \mathrm{Bu}$ 

Yun Chi, Ren-Chiun Lin, Chi-Chung Chen<br>Department of Chemistry, National Tsing Hua University, Hsinchu 30043 (Taiwan, ROC)

Shie-Ming Peng ${ }^{1}$ and Gene-Hsiang Lee
Department of Chemistry, National Taiwan University, Taipei 10764 (Taiwan, ROC)
(Received April 3, 1992)


#### Abstract

Condensation of triosmium alkyne complexes $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{R}_{2}\right), \mathrm{R}=\mathrm{Tol}$ and Me , with mononuclear tungsten acetylide complexes $\mathrm{LW}(\mathrm{CO})_{3} \mathrm{C}=\mathrm{CR}^{\prime}, \mathrm{L}=\mathrm{Cp}$ and $\mathrm{Cp}^{\star}, \mathrm{R}^{\prime}=\mathrm{Ph}$ and ${ }^{\mathrm{t}} \mathrm{Bu}$ generated six WOs $_{3}$ cluster complexes via $1: 1$ combination of the starting materials. The tetrahedral complexes $\mathrm{LWOs}_{3}(\mathrm{CO})_{9}\left[C C\left(R^{\prime}\right) C(R) C(R)\right](1)$ formed via coupling of the ligated alkyne with the $\beta$-carbon of the acetylide ligand were observed in all cases studied. The planar rhomboidal cluster $\mathrm{CpWOs}_{3}(\mathrm{CO})_{10}[\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me}) \mathrm{CC}(\mathrm{Ph})](2)$, generated via coupling of the ligated alkyne with the $\alpha$-carbon of the acetylide ligand, was isolated only from the reaction between $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Me}_{2}\right)$ and $\mathrm{CpW}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CPh}$. On thermolysis, complex 2 loses one CO to afford $\mathrm{CpWOs}{ }_{3}(\mathrm{CO})_{9}(\mu-\mathrm{H})[\mathrm{CMeC}$ -$\left.\mathrm{MeCC}\left(\mu_{2}-\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right]$ (7) via ortho-metallation of the phenyl substituent and $\mathrm{CpWOs}_{3}(\mathrm{CO})_{9}(\mathrm{CCMe}-$ $\mathrm{CMe})\left(\mu_{3}-\mathrm{CPh}\right)(3 a)$ via cleavage of the $\mathrm{C}-\mathrm{C}$ bond of the ligated $\mathrm{C}_{4}$ hydrocarbon fragment, confirming that the alkylidyne and the coordinated $\mathrm{C}_{3}$ hydrocarbon ligands in 3 a were generated via alkyneacetylide coupling followed by cleavage of a $\mathrm{C}-\mathrm{C}$ bond. For the reaction between $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Me}_{2}\right)$ and $\mathrm{Cp}^{*} \mathrm{~W}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CPh}$, in addition to the expected complexes 1 e and $3 \mathrm{e}\left(\mathrm{L}=\mathrm{Cp}{ }^{*} ; \mathrm{R}^{\prime}=\mathrm{Ph}\right)$, we observed the formation of three new complexes $\mathrm{Cp}^{*} \mathrm{WOs}_{3}(\mathrm{CO})_{9}\left(\mathrm{C}_{2} \mathrm{Me}_{2}\right)\left(\mu_{3}-\mathrm{CCPh}\right)(4), \mathrm{Cp}^{\star} \mathrm{WOs}_{3}{ }^{-}$ $(\mathrm{CO})_{9}\left(\mathrm{C}_{2} \mathrm{Me}_{2}\right)\left(\mu_{4}-\mathrm{CCPh}\right)$ (5) and $\mathrm{Cp}^{*} \mathrm{WOs}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CPh}\right)[\mathrm{CC}(\mathrm{Me}) \mathrm{C}(\mathrm{Me}) \mathrm{CO}]$ (6). The X-ray structural determination reveals that the butyne and acetylide ligands in butterfly complexes 4 and 5 remain as two uncoupled entities. Complexes 4 and 5 are not the precursors for the formation of other cluster complexes, as pyrolysis of these two complexes in refluxing toluene failed to afford substantial amount of butyne-acetylide coupling products. Finally, the tetrahedral complex 6 possesses two triply bridging alkylidyne ligands and a triply bridging CO ligand; the formation of alkylidyne ligands occurs via a $\mathrm{C}-\mathrm{C}$ bond scission of a ligated CMeCMeCCPh fragment, except that a CO ligand inserts into the linkage


[^0]between the butyne fragment and the transition metal. The structures of complexes $\mathbf{1 b}, \mathbf{4 , 5} 5$ and 6 were determined by X-ray analysis. Crystal data for 1b: space group $P 2_{1} / c ; a=18.349(3), b=11.371$ (2), $c=19.319(3) \AA, \beta=97.89(1)^{\circ}, Z=4$; final $R_{\mathrm{F}}=0.051, R_{w}=0.077$ for 3392 reflections with $I>2 \sigma(I)$. Crystal data for 4: space group $P \overline{1} ; a=9.982(2), b=10.153(1), c=17.410(5) \AA, \alpha=100.94(2), \beta=$ $90.88(2), \gamma=111.70(1)^{\circ}, Z=2$; final $R_{\mathrm{F}}=0.029, R_{w}=0.027$ for 4798 reflections with $I>2 \sigma(I)$. Crystal data for 5: space group $P 2_{1} / c ; a=13.721(6), b=14.791(4), c=16.880(8) \AA, \beta=111.74(4)^{\circ}, Z=4$; final $R_{F}=0.030, R_{w}=0.032$ for 4300 reflections with $I>2 \sigma(I)$. Crystal data for 6: space group $P$ $2_{1} / c ; a=13.910(3), b=14.375(6), c=16.490(8) \AA, \beta=\overline{9} 5.16(3)^{\circ}, Z=4 ;$ final $R_{F}=0.045, R_{w}=0.053$ for 4555 reflections with $I>2 \sigma(I)$.

## Introduction

The reactivity of heterometallic clusters has been of interest for many years. Research in this area is stimulated by a belief that the combination of metals with different electric and steric properties within one molecule may induce unique chemical transformations. In seeking to develop a systematic method to prepare polynuclear mixed-metal clusters and to exploit the chemistry of the hydrocarbon fragment in the ligand sphere of mixed-metal clusters, we [1] and others [2] have used transition metal acetylide complexes as building blocks to generate various mixed-metal acetylide complexes. For the reaction of $\mathrm{CpW}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CR}^{\prime}$ with $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{NCMe}_{2}\right.$, we isolated a tetranuclear acetylide complex $\mathrm{CpWOs}_{3}(\mathrm{CO})_{11^{-}}$ $\left(\mathrm{C} \equiv \mathrm{CR}{ }^{\prime}\right)\left(\mathrm{R}^{\prime}=\mathrm{Ph}\right.$ and $\left.{ }^{\mathrm{n}} \mathrm{Bu}\right)$ which possesses a novel $\mu_{4}-\eta^{2}$ acetylide ligand [3]. The reactivity of these $\mathrm{WOs}_{3}$ acetylide clusters toward various disubstituted alkynes has also been studied [4]. Treatment with disubstituted alkynes containing electronwithdrawing groups produces two alkyne-acetylide coupling products $\mathrm{CpWOs}_{3}(\mathrm{CO})_{9}[\mathrm{CC}(\mathrm{Ph}) \mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R})]$ and $\mathrm{CpWOs}_{3}(\mathrm{CO})_{10}-[\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R}) \mathrm{CC}(\mathrm{Ph})], \quad \mathrm{R}=$ $\mathrm{CO}_{2} \mathrm{Et}$ and $\mathrm{CO}_{2} \mathrm{Me}$. The former is produced via simple coupling of one alkyne molecule with the $\beta$-carbon of the coordinated acetylide ligand, and the latter, coupling with the $\alpha$-carbon. We failed to isolate any product formed by the addition of 2 equiv. of alkyne in these reactions. In contrast to these experimental results, treatment with ditolylacetylene affords a planar complex $\mathrm{CpWOs}_{3}(\mathrm{CO})_{8}$ $\left(\mu_{3}-\mathrm{CPh}\right)\left[\mu_{4}-\eta^{5}-\mathrm{C}\left(\mathrm{C}_{2} \mathrm{Tol}_{2}\right)_{2}\right]$ which possesses an alkylidyne ligand and a $\mathrm{C}_{5}$ alkylidene moiety formed via addition of two ditolylacetylenes, removal of three CO ligands and cleavage of the acetylide $\mathrm{C}-\mathrm{C}$ bond. One plausible reaction pathway involves a prior addition of one ditolylacetylene to give a $\mathrm{C}_{4}$ fragment similar to that observed in complexes $\mathrm{CpWOs}_{3}(\mathrm{CO})_{10}[\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R}) \mathrm{CC}(\mathrm{Ph})]$, followed by the reaction with a second ditolylacetylene and cleavage of the $\mathrm{C}-\mathrm{C}$ bond to give the triply bridging alkylidyne and the $\mathrm{C}_{5}$ alkylidene moiety. However, we failed to confirm this mechanism because we have not yet isolated any complex that was produced via addition of one equivalent of ditolylacetylene to the acetylide complex $\mathrm{CpWOs}_{3}(\mathrm{CO})_{11}(\mathrm{C} \equiv \mathrm{CPh})$ even under the condition that only an equimolar proportion of ditolylacetylene was employed. In order to synthesize unobserved products of the general structural formula $\mathrm{CpWOs}_{3}(\mathrm{CO})_{9}[\mathrm{CC}(\mathrm{Ph}) \mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R})]$ and $\mathrm{CpWOs}_{3}(\mathrm{CO})_{10}[\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R}) \mathrm{CC}(\mathrm{Ph})]$ where R is an electron-releasing substituent, and to carry out the subsequent reactivity study with alkyne, we performed the condensation of tungsten acetylide with triosmium alkyne complexes $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{R}_{2}\right), \mathrm{R}=\mathrm{Tol}$ and Me; by using the triosmium alkyne complexes, we can accurately control the ratio of alkyne and acetylide present in the final
product. In this paper, we report full details of these condensation reactions. A portion of the results, concerning the cluster framework rearrangement of $\mathrm{CpWOs}_{3}(\mathrm{CO})_{10}[\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me}) \mathrm{CC}(\mathrm{Ph})]$ (2) [5] and with the treatment of $\mathrm{LWOs}_{3}(\mathrm{CO})_{9}(\mathrm{CCRCR})\left(\mu_{3}-\mathrm{CPh}\right), \mathrm{L}=\mathrm{Cp}, \mathrm{R}=\mathrm{Tol}(3 \mathrm{a}) ; \mathrm{L}=\mathrm{Cp}^{\star}, \mathrm{R}=\mathrm{Me}$ (3e), with alkyne [6] have appeared in two separate preliminary reports.

## Experimental procedure

## General information and materials

Infrared spectra were recorded on a Bomen M-100 FT-IR spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AM- $400(400 \mathrm{MHz})$ instrument or a Varian Gemini-300 ( 300 MHz ) instrument. Mass spectra were obtained on a JEOL-HX110 instrument operating in fast-atom bombardment (FAB) mode. All reactions were performed under a dinitrogen atmosphere using deoxygenated solvents dried with an appropriate reagent. The progress of the reactions was monitored by analytical thin-layer chromatography ( 5735 Kieselgel $60 \mathrm{~F}_{254}$, E. Merck) and the products were separated on commercially available preparative thin-layer chromatographic plates (Kieselgel $60 \mathrm{~F}_{254}$, E. Merck). Elemental analyses were performed at the NSC Regional Instrumentation Center at National Cheng Kung University, Tainan, Taiwan. The triosmium alkyne complexes $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{R}_{2}\right), \mathrm{R}=\mathrm{Me}$ and Tol , were prepared from the reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}$ with 2-butyne or with ditolylacetylene in dichloromethane solution at room temperature [7]. The tungsten acetylide complexes $\mathrm{LW}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CR}^{\prime}, \mathrm{L}=\mathrm{Cp}$ and $\mathrm{Cp}{ }^{*} ; \mathrm{R}^{\prime}=\mathrm{Ph}$ and ${ }^{\mathrm{t}} \mathrm{Bu}$, were prepared according to the procedure reported in the literature [8].

## Reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Me}_{2}\right)$ with $\mathrm{CpW}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CPh}$

A toluene solution ( 65 mL ) of triosmium alkyne cluster $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Me}_{2}\right)(322$ $\mathrm{mg}, 0.356 \mathrm{mmol}$ ) and tungsten acetylide complex $\mathrm{CpW}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CPh}(205 \mathrm{mg}, 0.472$ mmol) was heated under reflux under nitrogen for 40 min . The color of the solution gradually turned from orange to brown. After evaporation of the solvent in vacuo, the residue was separated by thin-layer chromatography (silica gel, dichloromethane / hexane $1: 1$ ), giving 140 mg of dark-red $\mathrm{CpWOs}_{3}(\mathrm{CO})_{9}[\mathrm{CC}(\mathrm{Ph})$ $\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})](1 \mathrm{a})(0.114 \mathrm{mmol}, 32 \%)$ and 183 mg of orange-red $\mathrm{CpWOs}_{3}(\mathrm{CO})_{10^{-}}$ [ $\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me}) \mathrm{CC}(\mathrm{Ph})](2)(0.146 \mathrm{mmol}, 41 \%)$ in the order of their elution.

Spectral data for 1a: MS (FAB, $\left.{ }^{184} \mathrm{~W},{ }^{192} \mathrm{Os}\right) ; m / z 1232\left(\mathrm{M}^{+}\right) . \operatorname{IR}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ : $\nu(\mathrm{CO}) 2075 \mathrm{~s}, 2047 \mathrm{vs}, 2004 \mathrm{~m}$, 1993vs, 1972vw, 1958w, 1939w, 1850br,vw cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 294 \mathrm{~K}\right): \delta 7.70(\mathrm{~d}, 2 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.7 \mathrm{~Hz}) ; 7.47(\mathrm{t}, 2 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=8.4$ $\mathrm{Hz}) ; 7.39(\mathrm{t}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.4 \mathrm{~Hz}) ; 5.36(\mathrm{~s}, 5 \mathrm{H}) ; 2.47(\mathrm{~s}, 3 \mathrm{H}) ; 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$ : CO $\delta 231.2(J(\mathrm{~W}-\mathrm{C})=136 \mathrm{~Hz}$ ); 187.0, 186.0, 180.8 (br, 3C); $177.3(3 C) ; \delta 237.5(J(W-C)=68 \mathrm{~Hz}) ; 156.7,137.3,135.1(J(W-C)=14 \mathrm{~Hz})$; 133.2 (2C); 129.7, 129.2 (2C); 120.3, 92.6 (5C); 30.9 (Me); 19.2 (Me). Anal. Found: C, 25.07; H, 1.38. $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{O}_{9} \mathrm{Os}_{3} \mathrm{~W}_{1}$ calc.: $\mathrm{C}, 25.45 ; \mathrm{H}, 1.31 \%$.

Spectral data for 2: MS (FAB, $\left.{ }^{184} \mathrm{~W},{ }^{192} \mathrm{Os}\right): m / z 1260\left(\mathrm{M}^{+}\right) . \operatorname{IR}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right): \nu(\mathrm{CO})$ $2077 \mathrm{vs}, 2055 \mathrm{~s}, 2048 \mathrm{vs}, 2027 \mathrm{~m}, 2014 \mathrm{~s}$, 2010s, 1997m, 1975s, 1968s, 1952vw, 1940m $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 294 \mathrm{~K}\right): \delta 7.45(\mathrm{~d}, 2 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.4 \mathrm{~Hz}) ; 7.39-7.32(\mathrm{~m}$, $3 \mathrm{H}) ; 5.14(\mathrm{~s}, 5 \mathrm{H}) ; 2.98(\mathrm{~s}, 3 \mathrm{H}) ; 1.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 254 \mathrm{~K}\right)$ : CO $\delta 217.0$
$(J(W-C)=149 \mathrm{~Hz}) ; 186.0$ (br); 183.6, 183.3, 183.2 (br); 182.9, 182.4, 179.1 (br); 179.0, 173.2; $\delta 193.3,156.7,146.6,144.0,134.9\left(i-\mathrm{C}_{6} \mathrm{H}_{5}\right) ; 129.2\left(o, m-\mathrm{C}_{6} \mathrm{H}_{5}\right) ; 127.7$ ( $p-\mathrm{C}_{6} \mathrm{H}_{5}$ ); $126.5\left(m, o-\mathrm{C}_{6} \mathrm{H}_{5}\right)$; 90.9 (5C); 39.1 (Me); 23.3 (Me). Anal. Found: C, 25.83; $\mathrm{H}, 1.30 . \mathrm{C}_{27} \mathrm{H}_{16} \mathrm{O}_{10} \mathrm{Os}_{3} \mathrm{~W}_{1}$ calc.: $\mathrm{C}, 25.84 ; \mathrm{H}, 1.29 \%$.

Pyrolysis of complex 2
In a 100 mL round-bottom reaction flask, complex $2(183 \mathrm{mg}, 0.146 \mathrm{mmol})$ was treated with sublimed $\mathrm{Me}_{3} \mathrm{NO}(12.4 \mathrm{mg}, 0.165 \mathrm{mmol})$ in a mixture of dichloromethane ( 30 mL ) and acetonitrile ( 10 mL ) at ambient temperature for 30 min . After evaporation of the solvent on a rotary evaporator, the residue was dissolved in toluene solution ( 65 mL ) and brought to reflux for 5 min . Finally, the solvent was evaporated in vacuo, and the residue was separated by thin-layer chromatography (silica gel, dichloromethane / hexane $4: 7$ ), giving 32 mg of orange $\mathrm{CpWOs}_{3}(\mathrm{CO})_{9}(\mathrm{CCMeCMe})\left(\mu_{3}-\mathrm{CPh}\right)$ (3a) ( $0.026 \mathrm{mmol}, 18 \%$ ), 86 mg of $\mathrm{CpWOs}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{H})\left[\mathrm{CMeCMeCC}^{2}\left(\mu_{2}-\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right]$ (7) as a wine-red material ( 0.070 $\mathrm{mmol}, 48 \%$ ).

Spectral data for 3a: MS (FAB, $\left.{ }^{184} \mathrm{~W},{ }^{192} \mathrm{Os}\right) ; m / z \quad 1232\left(\mathrm{M}^{+}\right) . \operatorname{IR}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ : $\nu$ (CO) 2076s, 2044vs, 2035m, 2018s, 1997vw, 1975m, 1959s, 1914br,w cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 294 \mathrm{~K}\right): \delta 7.16(\mathrm{t}, 2 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.8 \mathrm{~Hz}) ; 7.05(\mathrm{t}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.3$ Hz ; $6.80(\mathrm{~d}, 2 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=6.5 \mathrm{~Hz}) ; 5.23(\mathrm{~s}, 5 \mathrm{H}) ; 3.39(\mathrm{~s}, 3 \mathrm{H}) ; 2.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 294 \mathrm{~K}$ ): Os-CO $\delta$ 185.6, 183.2, 180.7, 179.8, 178.9, 176.5 (3C); 172.1; $\delta 236.1,192.0,162.2,136.7,130.6,128.8$ (2C); 127.2 (2C); 96.5 (5C); 39.2 (Me); 32.1 (Me). Anal. Found: C, 25.47; H, 1.30. $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{O}_{9} \mathrm{Os}_{3} \mathrm{~W}_{1}$ calc.: C, 25.45; H, $1.31 \%$.

Spectral data for 7: MS (FAB, $\left.{ }^{184} \mathrm{~W},{ }^{192} \mathrm{Os}\right): m / z 1232\left(\mathrm{M}^{+}\right) . \operatorname{IR}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right): \nu(\mathrm{CO})$, 2069vw, 2053vs, 2036vs, 1997m, 1987m, 1975s, 1956w cm ${ }^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 294\right.$ $\mathrm{K}): \delta 8.49(\mathrm{~d}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=8.2 \mathrm{~Hz}) ; 7.59(\mathrm{~d}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=8.7 \mathrm{~Hz}) ; 7.03(\mathrm{t}, 1 \mathrm{H}$, $J(\mathrm{H}-\mathrm{H})=7.7 \mathrm{~Hz}) ; 6.59(\mathrm{t}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.3 \mathrm{~Hz}) ; 5.23(\mathrm{~s}, 5 \mathrm{H}) ; 2.53(\mathrm{~s}, 3 \mathrm{H}) ; 2.46(\mathrm{~s}$, $3 \mathrm{H}) ;-14.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{J}(\mathrm{W}-\mathrm{H})=73.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 253 \mathrm{~K}\right): \delta 184.9$ (3C); $180.5,179.8$ (2C); $177.2,175.5,175.3,174.0,156.7,154.1,147.8,141.1,127.0,122.8$, $117.8,114.3,107.0(J(C-W)=11 \mathrm{~Hz}) ; 89.0(5 \mathrm{C}) ; 32.4(\mathrm{Me}) ; 19.2(\mathrm{Me})$. Anal. Found: C, 25.46; H, 1.31. $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{O}_{9} \mathrm{Os}_{3} \mathrm{~W}_{1}$ calc.: $\mathrm{C}, 25.45$; $\mathrm{H}, 1.31 \%$.

## Reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Tol}_{2}\right)$ with $\mathrm{CpW}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CPh}$

A toluene solution ( 35 mL ) of triosmium alkyne cluster $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Tol}_{2}\right)(92$ $\mathrm{mg}, 0.087 \mathrm{mmol}$ ) and tungsten acetylide complex $\mathrm{CpW}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CPh}(76 \mathrm{mg}, 0.175$ mmol ) was heated under nitrogen reflux for 30 min . The color of the solution turned gradually from orange to deep-red. After evaporation of the solvent in vacuo, the residue was separated by thin-layer chromatography (silica gel, dichloromethane/hexane $1: 1$ ), giving 24 mg of dark-red $\mathrm{CpWOs}_{3}(\mathrm{CO})_{9}-$ $[\mathrm{CC}(\mathrm{Ph}) \mathrm{C}(\mathrm{Tol}) \mathrm{C}(\mathrm{Tol})](1 \mathrm{~b})(0.017 \mathrm{mmol}, 20 \%)$ and 26 mg of red $\mathrm{CpWOs}_{3}(\mathrm{CO})_{9}-$ (CCTolCTol) ( $\mu_{3}-\mathrm{CPh}$ ) (3b) ( 0.019 mmol, $22 \%$ ). Crystals of $\mathbf{1 b}$ suitable for single crystal X-ray diffraction studies were obtained by recrystallization from a layered solution of dichloromethane/methanol at room temperature.

Spectral data of 1b: MS (FAB, ${ }^{192} \mathrm{Os},{ }^{184} \mathrm{~W}$ ): $m / z 1384\left(\mathrm{M}^{+}\right)$. IR ( $\mathrm{C}_{6} \mathrm{H}_{12}$ ): $\nu(\mathrm{CO}) 2074 \mathrm{~s}, 2048 \mathrm{vs}, 2003 \mathrm{~m}, 1994 \mathrm{vs}, 1973 \mathrm{vw}, 1960 \mathrm{~m}, 1937 \mathrm{~m}, 1881 \mathrm{br}, \mathrm{vw} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 294 \mathrm{~K}$ ): $\delta 7.42-6.15(\mathrm{~m}, 13 \mathrm{H}) ; 5.31(\mathrm{~s}, 5 \mathrm{H}) ; 2.16(\mathrm{~s}, 3 \mathrm{H}) ; 2.14(\mathrm{~s}, 3 \mathrm{H})$. Anal. Found: C, 32.89 ; H, 1.74. $\mathrm{C}_{38} \mathrm{H}_{24} \mathrm{O}_{9} \mathrm{Os}_{3} \mathrm{~W}_{1}$ calc.: C, 33.10; H, $1.75 \%$.
Table 1
Experimental data for the X-ray diffraction studies ${ }^{a}$

|  | 1b | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| Empirical formula Crystal system | $\mathrm{C}_{38} \mathrm{H}_{24} \mathrm{O}_{9} \mathrm{Os}_{3} \mathrm{~W}_{1}$ <br> Monoclinic | $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{O}_{9} \mathrm{Os}_{3} \mathrm{~W}_{1}$ <br> Triclinic | $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{O}_{9} \mathrm{Os}_{3} \mathrm{~W}_{1}$ <br> Monoclinic | $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{O}_{10} \mathrm{Os}_{3} \mathrm{~W}_{1}$ <br> Monodinic |
| Space group | $P 2_{1} / \mathrm{c}$ | $P \overline{1}$ | P2 ${ }_{1} / \mathrm{c}$ | P2 ${ }_{1} / \mathrm{c}$ |
| $a($ A $)$ | 18.349(3) | 9.982(2) | 13.721(6) | 13.910(3) |
| $b$ (A) | 11.371(2) | 10.153(1) | 14.791(4) | 14.375(6) |
| $c(\mathrm{~A})$ | 19.319(3) | 17.410(5) | 16.880(8) | 16.490(8) |
| $\alpha\left({ }^{\circ}\right)$ |  | 100.94(2) |  | 16.49 (8) |
| $\beta\left({ }^{\circ}\right.$ ) | 97.89(1) | 90.88(2) | 111.74(4) | 95.16(3) |
| $\gamma\left({ }^{\circ}\right)$ |  | 111.70(1) |  |  |
| $U\left({ }^{3}{ }^{3}\right)$ | 3993(1) | 1602.8(6) | 3182(2) | 3284(2) |
| Mol. wt. | 1379.04 | 1296.99 | 1296.99 | 1325.00 |
| Crystal size (mm) | $0.06 \times 0.20 \times 0.45$ | $0.20 \times 0.30 \times 0.40$ | $0.06 \times 0.15 \times 0.50$ | $0.34 \times 0.50 \times 0.50$ |
| Z | 4 | 2 | 4 | 4 |
| $D_{c}\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$ | 2.294 | 2.688 | 2.707 | 2.680 |
| $F(000)$ | 2503.08 | 1171.55 | 2343.10 | 2399.09 |
| $2 \theta$ (max) | $45^{\circ}$ | $50^{\circ}$ | $50^{\circ}$ | $50^{\circ}$ |
| Scan parameter | $0.65+0.35 \tan \theta$ | $0.70+0.35 \tan \theta$ | $0.70+0.35 \tan \theta$ | $0.70+0.35 \tan \theta$ |
| Scan speed (deg/min) | 16.48/10 to $16.48 / 2$ | 16.48/10 to 16.48 /2 | 16.48/10 to $16.48 / 2$ | 16.48/10 to $16.48 / 2$ |
| $h, k, l$ ranges | -1919, 012,020 | -11 10, $012,-2020$ | $-1615,017,020$ | -1616, 017,019 |
| $\mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)\left(\mathrm{mm}^{-1}\right)$ | 12.51 | 15.75 | 15.69 | 15.21 |
| Transmission factors | $1.00,0.38$ | 1.00, 0.67 | $1.00,0.53$ | 1.00, 0.34 |
| No. of standard reflections: 3 | Variation $\leq 6 \%, 8 \sigma$, every 7200 s | Decay 5\%, every 7200 s | Variation $\leq 6 \%, 8 \sigma$, every 7200 s | Variation $\leq 4 \%, 6 \sigma$, every 7200 s |
| No. of unique data | 5262 | 5629 | 5587 | 5765 |
| Data with $I>2 \boldsymbol{\sigma}(I)$ | 3392 | 4798 | 4300 | 4555 |
| No. of atoms No. of parameters | 75 | 70 | 70 | 72 |
| No. of parameters | 460 | 398 | 398 | 416 |
| Weights | Counting-statistics $w^{-1}=\sigma^{2}(F)$ | Counting-statistics $w^{-1}=\sigma^{2}(F)$ | Counting-statistics $w^{-1}=\sigma^{2}(F)$ | Counting-statistics $w^{-1}=\sigma^{2}(F)+0.0001 \times F^{2}$ |
| $R_{\text {F }} ; R_{w}$ | 0.051; 0.077 | 0.029; 0.027 | 0.030; 0.032 | 0.045; 0.053 |
| GOF | 4.31 | 2.53 | 2.48 | 2.55 |
| Maximum $\Delta / \sigma$ ratio | 0.184 | 0.004 | 0.013 | 0.023 |
| $\begin{aligned} & \text { Residual electron }\left(\mathrm{e} \AA^{-3}\right) \\ & \max / \min \end{aligned}$ | 1.57/-1.79 | 1.85/-1.55 | 1.15/-1.46 | 2.18/-2.80 |

[^1] correction, psi scan; GOF $=\left[\Sigma \boldsymbol{w}\left|F_{\mathrm{o}}-F_{\mathrm{c}}\right|^{2} /\left(N_{\mathrm{o}}-N_{\mathrm{v}}\right)\right]^{1 / 2}\left(N_{\mathrm{o}}=\right.$ number of observations: $N_{\mathrm{v}}=$ number of variables $)$.

Table 2
Atomic coordinates and equivalent isotropic displacement coefficients for $\mathbf{1 b}$

|  | $x$ | $y$ | $z$ | $B_{\text {iso }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Os1 | 0.29763(9) | 0.15467(14) | 0.20115(7) | 4.10(8) |
| Os2 | $0.14292(9)$ | $0.17731(13)$ | $0.16456(7)$ | $3.5017)$ |
| Os3 | 0.21929 (8) | 0.01654(12) | 0.09198(7) | 2.73(6) |
| W | $0.19647(8)$ | -0.02837(14) | 0.22889(7) | 3.38(7) |
| C1 | $0.3868(24)$ | $0.172(4)$ | 0.1669 (21) | $7.0(26)$ |
| C2 | $0.3424(21)$ | $0.168(3)$ | $0.2952(18)$ | 5.2(21) |
| C3 | $0.2867(22)$ | $0.327(4)$ | 0.2034(23) | 7.7(27) |
| C4 | $0.1630(22)$ | $0.307(3)$ | 0.0991(20) | 6.2(24) |
| C5 | $0.1179(23)$ | $0.259(3)$ | $0.2458(20)$ | 5.8(24) |
| C6 | $0.0463(21)$ | 0.173 (3) | $0.1311(19)$ | 5.2(21) |
| C7 | $0.1371(18)$ | 0.0324(25) | 0.0226(16) | $3.2(17)$ |
| C8 | $0.2730(19)$ | 0.100(3) | 0.0291(17) | 3.8(17) |
| C9 | $0.0823(21)$ | -0.016(3) | 0.2011(17) | 5.2(21) |
| C10 | $0.2663(21)$ | -0.086(3) | $0.3365(18)$ | 5.4(22) |
| C11 | 0.2257(21) | $0.008(3)$ | $0.3542(17)$ | 5.3(22) |
| C12 | $0.1538(23)$ | -0.033(3) | $0.3390(18)$ | 5.7(23) |
| C13 | $0.1509(23)$ | -0.141(3) | $0.3114(18)$ | 5.9 (23) |
| C14 | $0.2260(23)$ | -0.177(3) | $0.3130(18)$ | 5.9 (23) |
| C15 | 0.2969(17) | -0.021(3) | 0.1864(17) | 3.9 (17) |
| C16 | $0.3165(18)$ | -0.100(3) | $0.1320(16)$ | 3.5(18) |
| C17 | $0.2589(23)$ | -0.182(3) | $0.1085(20)$ | 5.9(22) |
| C18 | $0.1924(18)$ | -0.153(3) | $0.1435(15)$ | 3.0(16) |
| C19 | $0.3903(19)$ | -0.113(3) | $0.1089(17)$ | 4.2(20) |
| C20 | 0.3988(18) | -0.123(3) | 0.0418(15) | 3.1(17) |
| C21 | $0.4665(20)$ | -0.140(3) | $0.0225(17)$ | 4.9(21) |
| C22 | $0.5248(25)$ | -0.141(4) | 0.0698(22) | 8.5(31) |
| C23 | 0.518(3) | -0.121(5) | 0.138(3) | 12.4(44) |
| C24 | $0.4518(24)$ | -0.112(4) | 0.1609(19) | 7.5(29) |
| C25 | $0.2605(18)$ | -0.277(3) | 0.0531(15) | 2.9(15) |
| C26 | $0.3063(21)$ | -0.373(3) | $0.0720(18)$ | 4.8(20) |
| C27 | 0.3113(25) | -0.460(3) | 0.0287(21) | 6.3(26) |
| C28 | 0.2733(23) | -0.455(3) | -0.0361(21) | 6.3(25) |
| C29 | 0.2293(23) | -0.366(3) | -0.0582(18) | 5.5(22) |
| C30 | 0.2216 (21) | -0.271(3) | -0.0128(18) | 4.5(19) |
| C31 | $0.280(3)$ | -0.554(3) | -0.0864(23) | 8.2(29) |
| C32 | $0.1306(20)$ | -0.242(3) | $0.1263(17)$ | 3.9(18) |
| C33 | $0.1350(22)$ | -0.354(3) | $0.1656(21)$ | 6.1(25) |
| C34 | $0.0741(24)$ | - 0.429(3) | $0.1562(24)$ | 7.6(29) |
| C35 | $0.0120(24)$ | -0.413(3) | $0.1108(20)$ | $6.0(24)$ |
| C36 | 0.0047(24) | -0.304(4) | 0.0782(22) | 7.3(26) |
| C37 | $0.0639(21)$ | -0.215(3) | $0.0845(19)$ | 5.4(21) |
| C38 | -0.066(3) | -0.489(4) | 0.101(3) | 11.5(38) |
| O1 | 0.4389 (19) | $0.189(3)$ | 0.1348(18) | 12.0(25) |
| O2 | $0.3690(18)$ | 0.174(3) | $0.3530(13)$ | 8.7(19) |
| O3 | 0.2802(20) | 0.4254(24) | 0.2066(20) | 12.2(25) |
| O4 | 0.1750(18) | 0.371(3) | 0.0550(15) | 9.3(20) |
| O5 | 0.1083(20) | $0.320(3)$ | 0.2881(14) | 11.1(23) |
| O6 | -0.0169(15) | $0.1721(22)$ | $0.1019(13)$ | $6.9(16)$ |
| 07 | 0.0846(13) | $0.0419(16)$ | -0.0185(11) | 4.0(12) |
| O8 | 0.3069(15) | 0.1510(22) | -0.0067(11) | 6.1(15) |
| O9 | $0.0215(13)$ | -0.0346(19) | $0.1850(12)$ | 4.9(13) |

Spectral data of 3b: MS (FAB, $\left.{ }^{192} \mathrm{Os},{ }^{184} \mathrm{~W}\right): m / z 1384\left(\mathrm{M}^{+}\right)$. IR $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right) \nu(\mathrm{CO})$ : 2077s, 2048vs, 2036m, 2018s, 1997vw, 1974m, 1969m, 1909w $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 294 \mathrm{~K}\right): \delta 7.24-6.75(\mathrm{~m}, 13 \mathrm{H}) ; 5.49(\mathrm{~s}, 5 \mathrm{H}) ; 2.33(\mathrm{~s}, 3 \mathrm{H}) ; 2.19(\mathrm{~s}, 3 \mathrm{H})$. Anal. Found: C, 32.91; H, 1.78. $\mathrm{C}_{38} \mathrm{H}_{24} \mathrm{O}_{9} \mathrm{Os}_{3} \mathrm{~W}_{1}$ calc.: C, 33.10, H, $1.75 \%$.

Reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{1 n}\left(\mathrm{C}_{2} \mathrm{Tol}_{2}\right)$ with $\mathrm{Cp}{ }^{\star} W(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CPh}$
A toluene solution ( 35 mL ) of triosmium alkyne cluster $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Tol}_{2}\right)(60$ $\mathrm{mg}, 0.057 \mathrm{mmol}$ ) and tungsten acetylide complex $\mathrm{Cp}{ }^{\star} \mathrm{W}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CPh}(57 \mathrm{mg}, 0.11$ mmol ) was heated under nitrogen reflux for 30 min . The reaction was stopped when the color of the solution turned from orange to dark brown. Then the solvent was removed in vacuo. After separation of the residue by thin-layer chromatography (silica gel, dichloromethane/hexane $1: 3$ ) and crystalization from a layered solution of dichloromethane/methanol at room temperature, the product $\mathrm{Cp}^{\star} \mathrm{WOs}_{3}(\mathrm{CO})_{9}[\mathrm{CC}(\mathrm{Ph}) \mathrm{C}(\mathrm{Tol}) \mathrm{C}(\mathrm{Tol})](1 \mathrm{c})$ was isolated as a red crystalline solid ( 9 $\mathrm{mg}, 0.006 \mathrm{mmol}, 11 \%$ ).

Spectral data of 1c: MS (FAB, $\left.{ }^{192} \mathrm{Os},{ }^{184} \mathrm{~W}\right): m / z 1454\left(\mathrm{M}^{+}\right)$. IR $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right) \nu(\mathrm{CO}):$ 2071vs, 2045vs, 1999s, 1991vs, 1967w, 1954m, 1935m, 1868br,vw cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 294 \mathrm{~K}\right): \delta 7.42(\mathrm{~m}, 2 \mathrm{H}) ; 7.22(\mathrm{~m}, 3 \mathrm{H}) ; 6.96(\mathrm{~d}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.2 \mathrm{~Hz}) ; 6.88$ $(\mathrm{d}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.6 \mathrm{~Hz}) ; 6.74(\mathrm{~d}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=6.7 \mathrm{~Hz}) ; 6.67(\mathrm{~d}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=$ $7.3 \mathrm{~Hz}) ; 6.51(\mathrm{~d}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{II})=7.7 \mathrm{~Hz}) ; 6.41(\mathrm{~d}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.8 \mathrm{~Hz}) ; 6.24(\mathrm{~d}$, $1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=6.6 \mathrm{~Hz}) ; 6.14(\mathrm{~d}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.7 \mathrm{~Hz}) ; 2.15(\mathrm{~s}, 3 \mathrm{H}) ; 2.12(\mathrm{~s}, 3 \mathrm{H}) ;$ 1.89 (s, 15H). Anal. Found: C, 34.48; H, 2.47. $\mathrm{C}_{43} \mathrm{H}_{34} \mathrm{O}_{9} \mathrm{Os}_{3} \mathrm{~W}_{1}$ calc.: C, 35.64; H, $2.36 \%$.

## Reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Tol}_{2}\right)$ with $\mathrm{CpW}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{C}^{t} \mathrm{Bu}$

A toluene solution ( 35 mL ) of triosmium alkyne cluster $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Tol}_{2}\right)(80$ $\mathrm{mg}, 0.075 \mathrm{mmol}$ ) and $\mathrm{CpW}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{C}^{\mathrm{t}} \mathrm{Bu}(62 \mathrm{mg}, 0.15 \mathrm{mmol})$ was heated under nitrogen reflux for 1.5 h . The solution turned gradually from orange to red brown. After evaporation of the solvent in vacuo, separation of the residue by thin-layer chromatography (silica gel, dichloromethane/hexane $1: 1$ ) and crystallization from a layered solution of dichloromethane / hexane at room temperature, the condensation product $\mathrm{CpWOs}_{3}(\mathrm{CO})_{9}\left[\mathrm{CC}\left({ }^{(t} \mathrm{Bu}\right) \mathrm{C}(\mathrm{Tol}) \mathrm{C}(\mathrm{Tol})\right](1 d)$ was isolated as a red crystalline solid ( $35 \mathrm{mg}, 0.026 \mathrm{mmol}, 34 \%$ ).

Table 3
Selected bond distances $(\AA)$ and bond angles $\left({ }^{\circ}\right)$ of $\mathbf{1 b}$ (e.s.d. in parentheses)

| $\mathrm{Os}(1)-\mathrm{Os}(2)$ | 2.842(2) | $\mathrm{Os}(1)-\mathrm{Os}(3)$ | 2.855(2) |
| :---: | :---: | :---: | :---: |
| Os(1)-W | 2.888(2) | $\mathrm{Os}(2)-\mathrm{Os}(3)$ | 2.795(2) |
| Os(2)-W | 2.765(2) | $\mathrm{Os}(3)-\mathrm{W}$ | 2.782(2) |
| Os(1)-C(15) | 2.02(3) | $\mathrm{Os}(3)-\mathrm{C}(15)$ | 2.20(3) |
| W-C(15) | 2.12(4) | $\mathrm{Os}(3)-\mathrm{C}(16)$ | 2.27(3) |
| Os(3)-C(17) | 2.38(4) | $\mathrm{Os}(3)-\mathrm{C}(18)$ | 2.26 (3) |
| W-C(18) | 2.17(3) | C(15)-C(16) | 1.46(5) |
| $\mathrm{C}(16)-\mathrm{C}(17)$ | 1.43(5) | C(17)-C(18) | 1.5i(5) |
| Os(2)-C(9) | 2.61(4) | W-C(9) | 2.09(4) |
| Os-CO (mean) | 1.91(4) |  |  |
| $\mathrm{Os}-\mathrm{CO}$ (mean) | 174 (4) | W-C(9)-O(9) | 165 (3) |

Spectral data of 1d: MS (FAB, $\left.{ }^{192} \mathrm{Os},{ }^{184} \mathrm{~W}\right): m / z 1364\left(\mathrm{M}^{+}\right)$. IR $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ $\nu(\mathrm{CO}): 2073 \mathrm{~s}, 2037 \mathrm{vs}, 2000 \mathrm{sh}$, 1995vs, $1977 \mathrm{w}, 1963 \mathrm{~m}, 1933 \mathrm{~m}, 1888 \mathrm{br}, \mathrm{vw} \mathrm{cm}{ }^{-1} .{ }^{12} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 294 \mathrm{~K}\right): \delta 7.11(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}(\mathrm{H}-\mathrm{H})=8.1 \mathrm{~Hz}) ; 6.68(\mathrm{~s}, 2 \mathrm{H}) ; 6.80(\mathrm{~d}, 1 \mathrm{H}$, $J(\mathrm{H}-\mathrm{H})=8.5 \mathrm{~Hz}) ; 6.77(\mathrm{~d}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=8.7 \mathrm{~Hz}) ; 6.58(\mathrm{~d}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.1 \mathrm{~Hz}) ;$ $6.40(\mathrm{dd}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.9$ and 2.1 Hz$) ; 5.84(\mathrm{dd}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.9$ and 2.0 Hz$)$;

Table 4
Atomic coordinates and equivalent isotropic displacement coefficients for 4

|  | $\boldsymbol{x}$ | $y$ | $z$ | $B_{\text {iso }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Os1 | 0.72791(4) | $0.67985(4)$ | 0.221373(24) | 1.764(19) |
| Os2 | 0.97550(4) | $0.75516(5)$ | 0.14901(3) | 2.065(18) |
| Os3 | $0.76280(4)$ | 0.44844(4) | $0.124081(24)$ | 1.765(18) |
| W | 0.66787(4) | $0.42065(5)$ | $0.276466(25)$ | 1.761(18) |
| C1 | $0.7038(12)$ | $0.8150(12)$ | $0.2999(6)$ | 3.2(6) |
| C2 | 0.6561(11) | 0.7580(11) | 0.1481(7) | 3.0(6) |
| C3 | 1.0589(10) | 0.9509(11) | 0.1971(7) | 2.6(6) |
| C4 | 1.1543(11) | $0.7520(11)$ | 0.1192(6) | 2.8(5) |
| C5 | 0.9218(11) | $0.8007(12)$ | 0.0517(7) | 3.3(6) |
| C6 | $0.9523(12)$ | 0.4571(11) | $0.1063(7)$ | 3.5(6) |
| C7 | $0.6895(10)$ | 0.4858(10) | 0.0319(6) | 2.3(5) |
| C8 | $0.7066(12)$ | 0.2454(12) | 0.0795(7) | 3.3(6) |
| C9 | 0.6044(12) | 0.5440 (12) | 0.3544(7) | 3.1(6) |
| C10 | 0.3851(11) | 0.5182(12) | 0.2271(7) | 3.0(6) |
| C11 | $0.5261(10)$ | 0.5001(11) | 0.2110(6) | 2.1(5) |
| C12 | 0.5432(10) | 0.3878(11) | 0.1634(6) | 2.2(5) |
| C13 | $0.4166(11)$ | 0.2536(11) | 0.1199 (7) | 3.2(6) |
| C14 | $0.8509(10)$ | 0.5607(10) | 0.2489 (5) | 1.5(4) |
| C15 | 0.9586(10) | 0.6871(10) | $0.2552(6)$ | 1.9(5) |
| C16 | $1.0527(10)$ | $0.7624(11)$ | 0.3312(6) | 2.2(5) |
| C17 | 1.1954(11) | 0.7794(13) | 0.3326(7) | 3.3(6) |
| C18 | 1.2870(12) | 0.8347(13) | 0.4008(7) | 4.0(7) |
| C19 | 1.2359(13) | 0.8791(13) | $0.4690(7)$ | 4.3(7) |
| C20 | 1.0937(14) | 0.8659(14) | 0.4704(7) | 4.3(7) |
| C21 | 1.0031(12) | 0.8087(14) | 0.4019(7) | 3.8(7) |
| C22 | 0.5584(12) | 0.2576(11) | 0.3562(7) | $2.9(6)$ |
| C23 | 0.5844(10) | $0.1775(11)$ | 0.2868(6) | 2.5(5) |
| C24 | 0.7390(11) | 0.2237(11) | 0.2847(7) | 2.6(5) |
| C25 | 0.8039(11) | $0.3335(12)$ | 0.3504(7) | 2.9 (6) |
| C26 | 0.6980 (12) | 0.3550(11) | $0.3958(6)$ | 3.0(6) |
| C27 | 0.4139(13) | $0.2311(13)$ | 0.3875 (8) | 4.3(7) |
| C28 | 0.4750(12) | $0.0425(11)$ | $0.2335(7)$ | 3.4(6) |
| C29 | 0.8174(13) | $0.1556(13)$ | 0.2283(8) | 4.1(7) |
| C30 | $0.9647(12)$ | $0.4052(13)$ | 0.3739(8) | 4.4(7) |
| C31 | $0.7218(14)$ | 0.4470(14) | 0.4772(7) | 4.6(8) |
| O1 | 0.6924(10) | 0.9063(9) | $0.3489(5)$ | 5.3(6) |
| O 2 | $0.6079(8)$ | 0.7982(8) | 0.1012(5) | 4.2(5) |
| O3 | 1.1077(8) | 1.0696(9) | 0.2282(6) | 4.8(5) |
| O4 | 1.2698(8) | 0.7561(9) | 0.1069 (5) | 4.4(5) |
| O5 | 0.8937(10) | 0.8317(10) | -0.0037(5) | 5.6(5) |
| O6 | 1.0595(9) | 0.4418(10) | 0.0957(6) | 6.3(6) |
| O7 | 0.6465(8) | 0.5069(9) | -0.0228(4) | 3.7(5) |
| O8 | 0.6787(10) | 0.1290 (8) | 0.0489(5) | 5.6(6) |
| 09 | 0.5630(9) | 0.6122(9) | 0.4030(5) | 4.7(5) |

5.24 (s, 5H); 2.17 (s, 3H); 2.13 (s, 3H); 1.32 (s, 9H). Anal. Found: C, 31.94; H, 2.20. $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{O}_{9} \mathrm{Os}_{3} \mathrm{~W}_{1}$ calc.: C, 31.82; H, 2.08\%.

## Reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Me}_{2}\right)$ with $\mathrm{Cp}{ }^{\star} \mathrm{W}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CPh}$

For a typical reaction, a toluene solution ( 70 mL ) of triosmium alkyne cluster $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Me}_{2}\right)$ ( $450 \mathrm{mg}, 0.497 \mathrm{mmol}$ ) and tungsten acetylide complex $C p{ }^{\star} \mathrm{W}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CPh}(251 \mathrm{mg}, 0.500 \mathrm{mmol})$ was heated under nitrogen reflux for 40 min . The color of the solution turned gradually from orange to dark brown. After evaporation of the solvent in vacuo, the residue was separated by thin-layer chromatography (silica gel, dichloromethane / hexane $1: 1$ ), giving 63 mg of dark-red $\mathrm{Cp}^{\star} \mathrm{WOs}_{3}(\mathrm{CO})_{9}[\mathrm{CC}(\mathrm{Ph}) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})](\mathbf{1 e})(0.046 \mathrm{mmol}, 9 \%), 60 \mathrm{mg}$ of red-orange $\mathrm{Cp}^{*} \mathrm{WOs}_{3}(\mathrm{CO})_{9}(\mathrm{CCMeCMe})\left(\mu_{3}-\mathrm{CPh}\right)(3 \mathrm{e})(0.049 \mathrm{mmol}, 10 \%), 24 \mathrm{mg}$ of red-orange $\mathrm{Cp}^{*} \mathrm{WOs}_{3}(\mathrm{CO})_{9}\left(\mathrm{C}_{2} \mathrm{Me}_{2}\right)\left(\mu_{3}-\mathrm{CCPh}\right)(5)(0.019 \mathrm{mmol}, 4 \%), 58 \mathrm{mg}$ of red-orange $\mathrm{Cp}^{*} \mathrm{WOs}_{3}(\mathrm{CO})_{9}\left(\mathrm{C}_{2} \mathrm{Me}_{2}\right)\left(\mu_{4}-\mathrm{CCPh}\right)(4)(0.045 \mathrm{mmol}, 9 \%)$ and 21 mg of greenish brown $\mathrm{Cp}^{\star} \mathrm{WOs}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CPh}\right)[\mathrm{CC}(\mathrm{Me}) \mathrm{C}(\mathrm{Me}) \mathrm{CO}]$ (6) ( $0.016 \mathrm{mmol}, 3 \%$ ). These complexes are listed in the order of elution. Crystals of complexes 4,5 and 6 suitable for single crystal X-ray diffraction studies were obtained by recrystallization from a layered solution of dichloromethane / hexane at room temperature.

Spectral data for 1e: MS (FAB, $\left.{ }^{184} \mathrm{~W},{ }^{192} \mathrm{Os}\right): m / z \quad 1302\left(\mathrm{M}^{+}\right) . \operatorname{IR}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ : $\nu(\mathrm{CO}) 2071 \mathrm{~s}, 2044 \mathrm{vs}, 2032 \mathrm{w}, 2001 \mathrm{~m}, 1990 \mathrm{vs}, 1966 \mathrm{vw}, 1955 \mathrm{~m}, 1937 \mathrm{~m}, 1843 \mathrm{br}, \mathrm{w}$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 294 \mathrm{~K}\right): \delta 7.74(\mathrm{~d}, 2 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.4 \mathrm{~Hz}) ; 7.46(\mathrm{t}, 2 \mathrm{H}$, $J(\mathrm{H}-\mathrm{H})=7.5 \mathrm{~Hz}) ; 7.39(\mathrm{t}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.3 \mathrm{~Hz}) ; 2.41(\mathrm{~s}, 3 \mathrm{H}) ; 2.07(\mathrm{~s}, 3 \mathrm{H}) ; 1.99(\mathrm{~s}$, 15 H ). Anal. Found: C, 28.68; H, 2.03. $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{O}_{9} \mathrm{Os}_{3} \mathrm{~W}_{1}$ calc.: C, 28.71; H, $2.02 \%$.

Spectral data for 3e: MS (FAB, ${ }^{184} \mathrm{~W},{ }^{192} \mathrm{Os}$ ): $m / z 1302\left(\mathrm{M}^{+}\right)$. IR $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ : $\nu$ (CO) 2072s, 2040vs, 2032m, 2012s, 1991vw, 1970m, 1952s, 1912br,w cm ${ }^{-1}$. ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 294 \mathrm{~K}\right): \delta 7.09(\mathrm{t}, 2 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=6.8 \mathrm{~Hz}) ; 6.70(\mathrm{t}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.2$ $\mathrm{Hz}) ; 6.91(\mathrm{~d}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.4 \mathrm{~Hz}) ; 6.84(\mathrm{~d}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.8 \mathrm{~Hz}) ; 3.21(\mathrm{~s}, 3 \mathrm{H}) ;$ 2.07 (s, 3H); $1.80(\mathrm{~s}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 294 \mathrm{~K}\right): \mathrm{Os}-\mathrm{CO} \delta 187.8,185.6$, $181.3,180.2,177.2,176.2(3 \mathrm{C}) ; 172.7 ; \delta 239.5(J(\mathrm{~W}-\mathrm{C})=111 \mathrm{~Hz}) ; 195.1,159.2$ $(J(\mathrm{~W}-\mathrm{C})=15 \mathrm{~Hz}) ; 136.6,136.0,132.4,129.8(J(\mathrm{~W}-\mathrm{C})=31 \mathrm{~Hz}) ; 128.2$, 127.1, 127.0, 107.7 (5C); 37.3 (Me); 26.6 (Me); 13.1 (5Me). Anal. Found: C, 28.69; H, 2.00. $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{O}_{9} \mathrm{Os}_{3} \mathrm{~W}_{1}$ calc.: $\mathrm{C}, 28.71$; $\mathrm{H}, 2.02 \%$.

Table 5
Selected bond distances $(\AA)$ and bond angles $\left(^{\circ}\right)$ of 4 (e.s.d. in parentheses)

| Os(1)-Os(2) | $2.7100(9)$ | Os(1)-Os(3) | $2.7612(8)$ |
| :--- | :---: | :--- | :--- |
| Os(1)-W | $2.8310(7)$ | Os(2)-Os(3) | $2.9942(8)$ |
| Os(3)-W | $2.860(1)$ | Os(1)-C(11) | $2.14(1)$ |
| Os(3)-C(12) | $2.205(9)$ | W-C(11) | $2.257(9)$ |
| W-C(12) | $2.214(9)$ | Os(1)-C(14) | $2.121(8)$ |
| Os(1)-C(15) | $2.339(9)$ | Os(2)-C(15) | $2.08(1)$ |
| Os(3)-C(14) | $2.248(9)$ | W-C(14) | $1.989(9)$ |
| C(11)-C(12) | $1.34(2)$ | C(14)-C(15) | $1.32(1)$ |
| W-C(9) | $1.94(1)$ | Mean Os-CO | $1.88(2)$ |
| W-C(9)-O(9) | $176.5(9)$ | Os-CO (mean) | $176(1)$ |
| W-C(14)-C(15) | $156.1(8)$ | Os(1)-C(14)-Os(3) | $78.3(3)$ |

Spectral data for 4: MS (FAB, $\left.{ }^{184} \mathrm{~W},{ }^{192} \mathrm{Os}\right): m / z 1302\left(\mathrm{M}^{+}\right) . \operatorname{IR}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right): \nu(\mathrm{CO})$ 2072vs, 2029vs, 2001vs, 1993vs, 1981w, 1974m, 1949s, 1915vw cm ${ }^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 294 \mathrm{~K}\right): \delta 7.53(\mathrm{~d}, 2 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.4 \mathrm{~Hz}) ; 7.28(\mathrm{t}, 2 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.3 \mathrm{~Hz})$; $7.24\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}(\mathrm{H}-\mathrm{H})=7.3 \mathrm{~Hz}\right.$ ); $3.48(\mathrm{~s}, 3 \mathrm{H}) ; 2.91(\mathrm{~s}, 3 \mathrm{H}) ; 2.09(\mathrm{~s}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 294 \mathrm{~K}\right)$ : CO $\delta 209.4(J(\mathrm{~W}-\mathrm{C})=172 \mathrm{~Hz}$ ); 188.6, 179.9, 178.7 (broad, 3C);

Table 6
Atomic coordinates and equivalent isotropic displacement coefficients for 5

|  | $x$ | $y$ | $z$ | $B_{\text {iso }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Os1 | 0.81592(5) | 0.31342(4) | 0.07030(3) | 2.329(25) |
| Os2 | 0.99734(5) | 0.20374(4) | $0.13402(4)$ | 2.87(3) |
| Os3 | 0.84873(5) | 0.16989(4) | -0.02370(4) | 2.63(3) |
| W | 0.63315(5) | 0.24243(4) | -0.04925(4) | 2.38(3) |
| C1 | 0.8159(11) | 0.4283(9) | $0.1139(10)$ | 3.8(8) |
| C2 | 0.8217(11) | $0.2625(9)$ | $0.1751(8)$ | 2.9(7) |
| C3 | 1.0745(12) | $0.2678(11)$ | 0.2353(9) | 4.1(9) |
| C4 | 1.1177(13) | $0.1442(11)$ | $0.1319(9)$ | 4.8(10) |
| C5 | $0.9633(12)$ | $0.1074(10)$ | $0.1924(10)$ | 4.0(8) |
| C6 | 0.8894(13) | 0.1094(10) | -0.1027(10) | 3.9(9) |
| C7 | 0.8272(13) | $0.0545(10)$ | $0.0145(10)$ | 4.2(9) |
| C8 | 0.6568(12) | $0.1606(9)$ | 0.0479(9) | 3.4(7) |
| C9 | 0.5954(11) | 0.3330 (9) | 0.0206(9) | 3.3(7) |
| C10 | 1.0247(13) | $0.4175(11)$ | $0.0844(10)$ | 4.6(9) |
| C11 | $0.9645(10)$ | 0.3316(9) | 0.0618(8) | 2.6(7) |
| C12 | 0.9748(11) | $0.2623(10)$ | 0.0084(9) | 3.7(8) |
| C13 | 1.0524(12) | $0.2655(12)$ | -0:0363(10) | 4.9(10) |
| C14 | $0.7789(11)$ | 0.2794(8) | -0.0714(7) | 2.6(7) |
| C15 | $0.7396(10)$ | 0.3598(9) | -0.0606(8) | 2.5(6) |
| C16 | 0.7163(10) | 0.4508(8) | -0.1024(8) | 2.5(6) |
| C17 | 0.7441(11) | 0.4636(9) | -0.1739(9) | 3.3(7) |
| C18 | 0.7266(11) | $0.5443(10)$ | -0.2146(9) | 3.3(7) |
| C19 | 0.6862(11) | $0.6137(10)$ | -0.1826(10) | 4.4(8) |
| C20 | 0.6582(13) | $0.6017(10)$ | -0.1135(11) | 4.6(9) |
| C21 | 0.6735(11) | $0.5200(9)$ | -0.0721(9) | 3.2(7) |
| C22 | $0.4615(11)$ | $0.1916(10)$ | -0.1037(8) | 3.2(7) |
| C23 | 0.5242(11) | 0.1251(9) | -0.1253(8) | 2.9(7) |
| C24 | $0.5669(11)$ | $0.1652(10)$ | -0.1840(8) | 3.3(7) |
| C25 | 0.5307(12) | 0.2543(11) | -0.2003(9) | 4.6(8) |
| C26 | 0.4682(11) | 0.2750(9) | -0.1486(9) | 3.9 (8) |
| C27 | 0.3955(13) | $0.1761(13)$ | -0.0515(11) | 5.7(11) |
| C28 | 0.5316(13) | 0.0292(9) | -0.1032(10) | 4.1(9) |
| C29 | 0.6205(14) | $0.1155(13)$ | -0.2312(10) | 5.7(11) |
| C30 | 0.5433(15) | $0.3177(12)$ | -0.2631(9) | 7.1(12) |
| C31 | 0.4056(15) | $0.3630(13)$ | -0.1512(12) | 7.9(12) |
| O1 | 0.8169(10) | 0.4999 (7) | 0.1430 (8) | 6.6(8) |
| O 2 | 0.8152(8) | $0.2359(7)$ | $0.2360(6)$ | 4.2(6) |
| O3 | 1.1226(9) | 0.3085(8) | 0.2947(7) | 6.1(7) |
| O4 | 1.1925(9) | 0.1101(9) | $0.1299(8)$ | 7.4(8) |
| 05 | 0.9396(10) | 0.0480(8) | 0.2264(8) | 6.7(8) |
| O6 | 0.9142(11) | 0.0789(8) | -0.1542(8) | 6.7(8) |
| 07 | 0.8107(10) | -0.0157(7) | 0.0389(8) | 6.1(8) |
| O8 | 0.6610(9) | $0.1110(7)$ | 0.1030(6) | 4.9(6) |
| 09 | 0.5587(9) | 0.3840(8) | 0.0554(7) | 5.7(7) |

$178.2,174.6,166.2 ; \delta 226.5(J(W-C)=145 \mathrm{~Hz}) ; 184.3(J(W-C)=21 \mathrm{~Hz}) ; 151.0$, $129.0\left(p-\mathrm{C}_{6} \mathrm{H}_{5}\right) ; 128.8\left(o, m-\mathrm{C}_{6} \mathrm{H}_{5}\right) ; 127.5\left(o, m-\mathrm{C}_{6} \mathrm{H}_{5}\right) ; 121.7\left(i-\mathrm{C}_{6} \mathrm{H}_{5}\right) ; 104.3(5 \mathrm{C}) ;$ $88.1(J(\mathrm{~W}-\mathrm{C})=36 \mathrm{~Hz}) ; 29.5(\mathrm{Me}) ; 27.8(\mathrm{Me}) ; 11.7$ (5Me). Anal. Found: C, 28.70; $\mathrm{H}, 2.04 . \mathrm{C}_{31} \mathrm{H}_{26} \mathrm{O}_{9} \mathrm{Os}_{3} \mathrm{~W}_{1}$ calc.: C, 28.71 ; $\mathrm{H}, 2.02 \%$.

Spectral data for 5: MS (FAB, $\left.{ }^{184} \mathrm{~W},{ }^{192} \mathrm{Os}\right): m / z 1302\left(\mathrm{M}^{+}\right) . \operatorname{IR}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right): \nu(\mathrm{CO})$ 2078vs, 2015vs, 2001vs, 1989s, 1972vs, 1956s, 1933w, 1918m, 1903m cm ${ }^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 294 \mathrm{~K}\right): \delta 7.77(\mathrm{~d}, 2 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.8 \mathrm{~Hz}) ; 7.39(\mathrm{t}, 2 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=6.8 \mathrm{~Hz})$; $7.28(\mathrm{t}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=6.9 \mathrm{~Hz}) ; 3.06(\mathrm{~s}, 3 \mathrm{H}) ; 2.64(\mathrm{~s}, 3 \mathrm{H}) ; 1.95(\mathrm{~s}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 240 \mathrm{~K}\right): \mathrm{CO} \delta 214.9(J(\mathrm{~W}-\mathrm{C})=164 \mathrm{~Hz}) ; 210.5(J(\mathrm{~W}-\mathrm{C})=156 \mathrm{~Hz}) ; 197.3$, 192.9, 192.6, 184.8 (2C); 171.3, 170.4; $\delta 148.5,143.1,137.5,136.5\left(i-\mathrm{C}_{6} \mathrm{H}_{5}\right) ; 131.3$ $\left(o-\mathrm{C}_{6} \mathrm{H}_{5}\right) ; 129.5\left(m-\mathrm{C}_{6} \mathrm{H}_{5}\right) ; 128.3\left(p-\mathrm{C}_{6} \mathrm{H}_{5}\right) ; 103.2(5 \mathrm{C}) ; 78.8,39.7(\mathrm{Me}) ; 35.5$ (Me); 12.3 (5Me). Anal. Found: C, 28.65; H, 2.02. $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{O}_{9} \mathrm{Os}_{3} \mathrm{~W}_{1}$ calc.: C, 28.71; H, $2.02 \%$.

Spectral data for 6: MS (FAB, $\left.{ }^{184} \mathrm{~W},{ }^{192} \mathrm{Os}\right): m / z 1330\left(\mathrm{M}^{+}\right) . \operatorname{IR}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right): \nu(\mathrm{CO})$ 2076s, 2041vs, 2005w, 1992m, 1988m, 1977s cm ${ }^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 230 \mathrm{~K}\right): \delta$ $7.24(\mathrm{~m}, 2 \mathrm{H}) ; 7.14(\mathrm{~m}, 2 \mathrm{H}) ; 7.06(\mathrm{~m}, 1 \mathrm{H}) ; 2.30(\mathrm{~s}, 3 \mathrm{H}) ; 1.70(\mathrm{~s}, 15 \mathrm{H}) ; 1.62(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 254 \mathrm{~K}\right)$ : CO $\delta 280.6(J(\mathrm{~W}-\mathrm{C})=150 \mathrm{~Hz}) ; 204.6,187.9,178.8$, 174.0 (br, 3C); $173.8(3 \mathrm{C}) ; \delta 282.1(J(\mathrm{~W}-\mathrm{C})=122 \mathrm{~Hz}) ; 250.6(J(\mathrm{~W}-\mathrm{C})=107 \mathrm{~Hz})$; $181.1(J(W-C)=15 \mathrm{~Hz}) ; 163.4(J(\mathrm{~W}-\mathrm{C})=15 \mathrm{~Hz}) ; 146.3,131.7,128.8,128.7,128.5$, 127.0, 109.5 (5C); 22.5 (Me); 11.7 (Me); 10.5 ( 5 Me ). Anal. Found: C, 28.95; H, 1.97. $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{O}_{10} \mathrm{Os}_{3} \mathrm{~W}_{1}$ calc.: C, 29.01; $\mathrm{H}, 1.98 \%$.

## Pyrolysis of complex 6

A toluene solution of complex $6(12 \mathrm{mg}, 0.009 \mathrm{mmol})$ was heated under reflux at 1 atm of CO atmosphere for 3 h . After evaporation of the solvent on a rotary evaporator, the residue was separated by thin layer chromatography (silica gel, dichloromethane / hexane $1: 2)$, giving 6.4 mg of orange $3 \mathrm{e}(0.0049 \mathrm{mmol}, 54 \%)$ and 1.9 mg of unreacted $6(0.0014 \mathrm{mmol}, 16 \%)$.

## X-Ray crystallography

Diffraction measurements were carried out on a Nonius CAD-4 diffractometer. Lattice parameters of $\mathbf{1 b}$ were determined from 25 randomly selected high angle reflections with $2 \theta$ angles in the range $18.82-26.38^{\circ}$, whereas the corresponding

Table 7
Selected bond distances $(\AA)$ and bond angles $\left({ }^{\circ}\right)$ of 5 (e.s.d. in parentheses)

| Os(1)-Os(2) | $2.829(1)$ | $O s(1)-\mathrm{Os}(3)$ | $2.785(1)$ |
| :--- | :---: | :--- | :--- |
| Os(1)-W | $2.778(2)$ | Os(2)-Os(3) | $2.734(2)$ |
| Os(3)-W | $3.024(2)$ | $O s(1)-C(11)$ | $2.284(2)$ |
| Os(2)-C(11) | $2.21(1)$ | $O s(2)-C(12)$ | $2.20(1)$ |
| Os(3)-C(12) | $2.11(1)$ | Os(1)-C(14) | $2.31(1)$ |
| Os(1)-C(15) | $2.18(1)$ | Os(3)-C(14) | $1.90(1)$ |
| W-C(14) | $2.23(1)$ | W-C(15) | $2.32(1)$ |
| C(11)-C(12) | $1.41(2)$ | C(14)-C(15) | $1.35(2)$ |
| Mean W-CO | $1.97(2)$ | Mean Os-CO | $1.88(2)$ |
| W-CO (mean) | $172(1)$ | Os-CO (mean) | $177(1)$ |
| Os(3)-C(14)-C(15) | $165(3)$ |  |  |

cell dimensions of complexes 4,5 and 6 were determined from 25 reflections, with $2 \theta$ angles in the range $19.00-24.50^{\circ}, 20.68-22.82^{\circ}$ and $20.74-26.34^{\circ}$, respectively. For complexes $\mathbf{1 b}, 5$ and 6 , the space group $P 2_{1} / c$ was identified on the basis of

Table 8
Atomic coordinates and equivalent isotropic displacement coefficients for 6

|  | $x$ | $y$ | $z$ |  |
| :--- | :---: | :--- | :--- | :--- |
| Os1 | $0.12847(5)$ | $0.96861(4)$ | $0.19161(3)$ | $1.996(23)$ |
| Os2 | $0.28390(5)$ | $0.87519(4)$ | $0.12641(3)$ | $2.350(25)$ |
| Os3 | $0.24889(5)$ | $0.85162(4)$ | $0.29459(3)$ | $2.32(3)$ |
| W | $0.32200(5)$ | $1.02365(5)$ | $0.23883(3)$ | $2.143(25)$ |
| C1 | $0.0647(14)$ | $1.0839(13)$ | $0.1802(12)$ | $4.1(9)$ |
| C2 | $0.0235(12)$ | $0.9184(15)$ | $0.2427(11)$ | $4.2(9)$ |
| C3 | $0.0739(12)$ | $0.9174(12)$ | $0.0926(10)$ | $3.2(7)$ |
| C4 | $0.4070(14)$ | $0.8542(14)$ | $0.0920(11)$ | $4.5(9)$ |
| C5 | $0.2356(16)$ | $0.7538(11)$ | $0.0918(9)$ | $3.9(9)$ |
| C6 | $0.2468(23)$ | $0.7246(13)$ | $0.2594(11)$ | $7.2(15)$ |
| C7 | $0.1472(14)$ | $0.8240(11)$ | $0.3635(9)$ | $3.2(7)$ |
| C8 | $0.3340(13)$ | $0.8267(13)$ | $0.3819(9)$ | $3.6(8)$ |
| C9 | $0.3916(12)$ | $0.9042(14)$ | $0.2460(9)$ | $3.6(8)$ |
| C10 | $0.2540(11)$ | $1.0187(10)$ | $0.1305(8)$ | $2.1(6)$ |
| C11 | $0.2294(14)$ | $1.0602(12)$ | $0.0463(9)$ | $3.2(7)$ |
| C12 | $0.2345(13)$ | $1.0051(12)$ | $-0.0175(8)$ | $3.1(8)$ |
| C13 | $0.2582(14)$ | $0.9089(11)$ | $0.0027(9)$ | $3.1(7)$ |
| C14 | $0.1935(18)$ | $1.1595(13)$ | $0.0422(11)$ | $5.1(10)$ |
| C15 | $0.2083(18)$ | $1.0354(14)$ | $-0.1055(10)$ | $4.9(11)$ |
| C16 | $0.2104(11)$ | $0.9972(11)$ | $0.3069(9)$ | $2.6(7)$ |
| C17 | $0.1708(11)$ | $1.0357(10)$ | $0.3823(8)$ | $1.9(6)$ |
| C18 | $0.1022(14)$ | $1.1000(15)$ | $0.3814(10)$ | $4.4(9)$ |
| C19 | $0.0686(17)$ | $1.1365(16)$ | $0.4493(12)$ | $5.6(11)$ |
| C20 | $0.1049(17)$ | $1.1076(15)$ | $0.5218(12)$ | $5.3(11)$ |
| C21 | $0.1780(17)$ | $1.0428(13)$ | $0.5315(10)$ | $4.6(10)$ |
| C22 | $0.2112(17)$ | $1.0081(13)$ | $0.4612(10)$ | $4.5(10)$ |
| C23 | $0.3457(17)$ | $1.1856(13)$ | $0.2548(12)$ | $5.1(10)$ |
| C24 | $0.3859(16)$ | $1.1385(14)$ | $0.3309(11)$ | $5.2(10)$ |
| C25 | $0.4578(16)$ | $1.0853(15)$ | $0.3154(11)$ | $5.3(10)$ |
| C26 | $0.4720(14)$ | $1.0907(17)$ | $0.2309(11)$ | $5.4(11)$ |
| C27 | $0.4060(14)$ | $1.1547(14)$ | $0.1966(10)$ | $4.4(9)$ |
| C28 | $0.2742(24)$ | $1.2621(15)$ | $0.2490(17)$ | $8.5(18)$ |
| C29 | $0.3561(23)$ | $1.1678(18)$ | $0.4146(13)$ | $8.3(15)$ |
| C30 | $0.520(3)$ | $1.0334(23)$ | $0.3792(21)$ | $11.6(21)$ |
| C31 | $0.5538(18)$ | $1.0449(24)$ | $0.1893(17)$ | $9.4(18)$ |
| C32 | $0.4102(22)$ | $1.1951(22)$ | $0.1107(13)$ | $10.3(18)$ |
| O1 | $0.0224(13)$ | $1.1535(10)$ | $0.1695(9)$ | $6.9(9)$ |
| O2 | $0.0436(10)$ | $0.8935(13)$ | $0.2737(8)$ | $6.8(9)$ |
| O3 | $0.0388(11)$ | $0.8899(11)$ | $0.0306(8)$ | $6.0(8)$ |
| O4 | $0.4813(11)$ | $0.8416(12)$ | $0.0694(8)$ | $7.0(9)$ |
| O5 | $0.2090(15)$ | $0.6856(10)$ | $0.0670(8)$ | $7.7(11)$ |
| O6 | $0.2294(19)$ | $0.6459(9)$ | $0.2434(8)$ | $9.6(14)$ |
| O8 | $0.8978(11)$ | $0.8211(10)$ | $0.4065(7)$ | $4.6(6)$ |
| O10 | $0.8604(10)$ | $0.4384(7)$ | $5.7(7)$ |  |
|  | $0.8516(9)$ | $0.2576(7)$ | $5.1(7)$ |  |
|  |  | $0.0526(6)$ |  |  |

Table 9
Selected bond distances ( $\AA$ ) and bond angles (deg) of 6 (e.s.d. in parentheses)

| $\overline{\mathrm{Os}(1)-\mathrm{Os}(2)}$ | 2.838(1) | $\mathrm{Os}(1)-\mathrm{Os}(3)$ | 2.829(1) |
| :---: | :---: | :---: | :---: |
| Os(1)-W | 2.846(1) | $\mathrm{Os}(2)-\mathrm{Os}(3)$ | 2.879(2) |
| Os(2)-W | 2.845 (1) | Os(3)-W | 2.857(1) |
| $\mathrm{Os}(2)-\mathrm{C}(9)$ | 2.40 (2) | Os(3)-C(9) | 2.33(2) |
| W-C(9) | 1.97(2) | $\mathrm{Os}(1)-\mathrm{C}(10)$ | 2.21(1) |
| $\mathrm{Os}(2)-\mathrm{C}(10)$ | 2.11(2) | W-C(10) | 1.95(1) |
| $\mathrm{Os}(2)-\mathrm{C}(13)$ | 2.10(2) | C(10)-C(11) | 1.52(2) |
| $\mathrm{C}(11)-\mathrm{C}(12)$ | 1.32(2) | $\mathrm{C}(12)-\mathrm{C}(13)$ | 1.45(2) |
| Os(1)-C(16) | 2.17(2) | $\mathrm{Os}(3)-\mathrm{C}(16)$ | 2.17(2) |
| W-C(16) | 1.94(1) | Mean Os-CO (terminal) | 1.88(2) |
| W-C(9)-O(9) | 176.5(9) | Mean Os-CO (terminal) | 176 (1) |
| W-C(14)-C(15) | 156.1(8) | $\mathrm{Os}(1)-\mathrm{C}(14)-\mathrm{Os}(3)$ | 78.3(3) |

systematic absences, whereas complex 4 crystallized in a triclinic space system. All reflections were corrected for Lorentz, polarization and absorption effects. All data reduction and refinement were performed using the NRCC-SDP-Vax packages. The structures were solved by the direct method and refined by least squares cycle, all non-hydrogen atoms were refined with anisotropic thermal parameters. The positions of the hydrogen atoms were calculated by assuming idealized geometries. The contributions of these hydrogen atoms were added to the structure factor calculations, but their positions were not refined. The combined data collection and refinement parameters are given in Table 1. Atomic positional parameters for complex 1b are found in Table 2, whereas some selected bond angles and lengths are given in Table 3. The corresponding parameters for complexes 4,5 and 6 are given in Tables 4 and 5, Tables 6 and 7, and Tables 8 and 9, respectively. Tables of bond distances and angles, tables of positional parameters and anisotropic thermal parameters and listings of the observed and calculated structural factors are available from one of the authors (Y.C.).

## Results and discussion

Reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Me}_{2}\right)$ with $\mathrm{CpW}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CPh}$
Treatment of triosmium complex $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Me}_{2}\right)$ and tungsten acetylide complex $\mathrm{CpW}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CPh}$ gave two heterometallic complexes $\mathrm{CpWOs}{ }_{3}(\mathrm{CO})_{9}-$ $[\mathrm{CC}(\mathrm{Ph}) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})]$ (1a) and $\mathrm{CpWOs}_{3}(\mathrm{CO})_{10}[\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me}) \mathrm{CC}(\mathrm{Ph})]$ (2). These two complexes have been characterized by spectroscopic methods and by microanalysis. The molecular ions observed in FAB mass spectra suggest that complex 1a possesses nine CO ligands and complex 2, ten CO ligands. The ${ }^{1} \mathrm{H}$ NMR spectra show the presence of $\mathrm{C}_{2} \mathrm{Me}_{2}$ and CCPh fragments, indicating that these two complexes were generated via a $1: 1$ condensation reaction. This pattern of reactivity agrees with that of the reactions of tetranuclear acetylide complexes $\mathrm{CpWOs}_{3}(\mathrm{CO})_{11}(\mathrm{CCR})$ with internal alkyne containing electron-withdrawing substituents, suggesting that the products isolated should adopt similar structure (Scheme 1). Based on these arguments, we propose that complex 1a was produced by coupling of the ligated butyne with the $\beta$-carbon of the acetylide ligand,

$L=C p, R=M e, R^{\prime}=P h(1 a)$
$L=C p, R=M \theta, R^{\prime}=\operatorname{Ph}(1 a)$
$L=C p, R=T o l, R^{\prime}=P h(1 b)$
$L=C p^{*}, R=$ Tol, $R^{\prime}=P h(1 c)$
$\mathrm{L}=\mathrm{Cp}, \mathrm{R}=\mathrm{Tol}, \mathrm{R}^{\prime}={ }^{\mathrm{t}} \mathrm{Bu}$ (1d)
$\mathrm{L}=\mathrm{C} \rho^{*}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Ph}(\mathbf{1 e})$

$\mathrm{L}=\mathrm{Cp}^{*}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Ph}(4)$


$\mathrm{L}=\mathrm{Cp}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Ph}(2)$

Scheme 1.

$\mathrm{L}=\mathrm{Cp}{ }^{*}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Ph}(5)$


$$
\begin{aligned}
& L=C p, R=M e, R^{\prime}=P h(3 a) \\
& L=C p, R=T o l, R^{\prime}=P h(3 b)
\end{aligned}
$$



$$
L=C p^{*}, R=M e, R^{\prime}=\operatorname{Ph}(3 e)
$$


$L=C p^{*}, R=M e, R^{\prime}=\operatorname{Ph}(6)$
whereas complex 2 was generated by coupling with the $\alpha$-carbon of the acetylide ligand.

These assignments are supported by ${ }^{13} \mathrm{C}$ NMR studies. The ${ }^{13} \mathrm{C}$ NMR data of 1a show five CO resonances at $\delta 231.2(J(\mathrm{~W}-\mathrm{C})=136 \mathrm{~Hz}), 187.0,186.0,180.8$ (br, 3 C ) and 177.3 (3C) consistent with the proposed structure. The signal at $\delta 231.2$ is due to the semi-bridging CO linked to the tungsten atom, the signals at $\delta 187.0$ and 186.0 are due to the CO of an $\mathrm{Os}(\mathrm{CO})_{2}$ unit, whereas the CO resonances at $\delta$ 180.8 and 177.3 with ratio three are assigned to two $\mathrm{Os}(\mathrm{CO})_{3}$ units that undergo rapid threefold rotation. The ligated carbon atoms appear at $\delta 237.5(J(\mathrm{~W}-\mathrm{C})=68$ $\mathrm{Hz}), 156.7,135.1(J(\mathrm{~W}-\mathrm{C})=14 \mathrm{~Hz})$ and 120.3 , which are assigned with the assistance of their tungsten satellites and the data of chemicai shifts. The signai at $\delta 237.5$ is due to the $\alpha$-carbon of the $\mathrm{C}_{4}$ ligand because the chemical shift is in the range expected for a triply bridging alkylidyne carbon; the signal at $\delta 135.1$ which exhibits the tungsten-carbon coupling is assigned to the $\omega$-carbon because this carbon is directly linked to the tungsten atom. The signals at $\delta 156.7$ and 120.3 are due to the signals of $\beta$ - and $\gamma$-carbons by default. For complex 2 , the ${ }^{13} \mathrm{C}$ data of a ${ }^{13} \mathrm{CO}$ enriched sample present one $\mathrm{W}-\mathrm{CO}$ resonance at $\delta 217.0$ with $J(\mathrm{~W}-\mathrm{C})=149$ Hz and nine $\mathrm{Os}-\mathrm{CO}$ resonances (six sharp and three very broad signals) in the range $186.0-173.2$ at 254 K . The signals of the ligated $\mathrm{C}_{4}$ hydrocarbon are observed at $\delta 193.3,156.7,146.6$ and 144.0; no tungsten coupling was seen for all four resonances.

The reactivity of complex 2 was examined. Treatment of 2 with 1.1 molar equiv. of $\mathrm{Me}_{3} \mathrm{NO}$ in a mixture of acetonitrile/dichloromethane at ambient temperature followed by heating in refluxing toluene produced a burgundy solution within 10 min. Following TLC separation (hexane/dichloromethane 4:1) and purification by recrystallization, we obtained an orange cluster $\mathrm{CpWOs}_{3}(\mathrm{CO})_{9}(\mathrm{CCMeCMe})\left(\mu_{3}-\right.$

(3a)

(7)

Scheme 2.
$\mathrm{CPh})(3 \mathrm{a}, 18 \%)$, in addition to a wine-red cluster $\mathrm{CpWOs}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{H})[\mathrm{CMeC}-$ $\left.\operatorname{MeCC}\left(\mu_{2}-\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right](7,48 \%)$ (Scheme 2). This observation strongly indicates that the alkylidyne and the coordinated $\mathrm{C}_{3}$ hydrocarbon ligands in 3 were generated via alkyne-acetylide coupling followed by cleavage of a $\mathrm{C}-\mathrm{C}$ bond. The characterization of 3a was achieved by comparing the IR and ${ }^{13} \mathrm{C}$ NMR spectral data with those of complex 3 b , whereas complex 7 was determined by conventional spectroscopic methods and X-ray diffraction [5].

Reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Tol}_{2}\right)$ with $\mathrm{LW}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CR}^{\prime}$
When the triosmium alkyne complex $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Tol}_{2}\right)$ was treated with another tungsten acetylide complex $\mathrm{CpW}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CPh}$ under similar conditions, two heterometallic complexes $\mathrm{CpWOs}_{3}(\mathrm{CO})_{9}[\mathrm{CC}(\mathrm{Ph}) \mathrm{C}(\mathrm{Tol}) \mathrm{C}(\mathrm{Tol})]$ (1b) and $\mathrm{CpWOs}_{3}(\mathrm{CO})_{9}(\mathrm{CCTolCTol})\left(\mu_{3}-\mathrm{CPh}\right)$ (3b) were isolated after purification by preparative TLC and recrystallization. In contrast, the corresponding reactions of $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Tol}_{2}\right)$ with acetylide complexes $\mathrm{LW}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CR}^{\prime}$ in refluxing toluene afforded only one heterometallic cluster complex $\mathrm{LWOs}_{3}(\mathrm{CO})_{9}\left[\mathrm{CC}\left(\mathrm{R}^{\prime}\right) \mathrm{C}(\mathrm{Tol})-\right.$ $\mathrm{C}(\mathrm{Tol})]\left(\mathrm{L}=\mathrm{Cp}^{\star}, \mathrm{R}^{\prime}=\mathrm{Ph}, \mathbf{1 c}\right.$ and $\left.\mathrm{L}=\mathrm{Cp}, \mathrm{R}^{\prime}={ }^{\mathrm{t}} \mathrm{Bu}, \mathbf{1 d}\right)$. The identification of complexes 1b, 1c and 1d was achieved by analysis of their spectroscopic data. In particular, IR spectroscopy is the most valuable technique because the $\nu(\mathrm{CO})$ spectra in solution are almost identical to that of complex 1a. Complex 3b was initially characterized by IR, mass and ${ }^{1} \mathrm{H}$ NMR data; the structure was confirmed by X-ray diffraction studies. The crystal structure of 3b has been discussed previously [6]. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b}$ was not recorded because of poor solubility. We present the ${ }^{13} \mathrm{C}$ NMR data of the related $\mathrm{Cp}{ }^{\star}$ derivative 3 e on p . 363.

## Crystal structure of complex 1 b

Although the spectroscopic data of $\mathbf{1 b}$ fairly well define its molecular structurc, nevertheless X-ray diffraction studies were performed in order to confirm our structural assignment. The ortep diagram of complex $\mathbf{1 b}$ and the scheme used to label the atoms are illustrated in Fig. 1, while selected bond distances and angles are listed in Table 6. The structure is essentially identical to that of the related $\mathrm{CpWOs}_{3}(\mathrm{CO})_{9}\left[\mathrm{CC}(\mathrm{Ph}) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right)\right]$. For complex 1b, the tungsten atom and three osmium atoms form a slightly distorted tetrahedral skeleton with metal-metal distances in the range $2.765-2.888 \AA$. The W atom is capped by a Cp ligand and a semibridging CO ligand ( $\mathrm{W}-\mathrm{C}(9)-\mathrm{O}(9)=165^{\circ}$ ), the $\mathrm{Os}(3)$ atom is coordinated by all four carbon atoms of the ligated $\mathrm{C}_{4}$ fragment and two extra


Fig. 1. Molecular structure of $\mathbf{1 b}$, showing the atomic numbering scheme; the tolyl substituent on atoms $C(17)$ and $C(18)$ and the phenyl group on $C(16)$ are removed for clarity.
terminal CO ligands, whereas the $\operatorname{Os}(1)$ and the $\operatorname{Os}(2)$ atoms are each linked to three terminal $C O$ ligands. The ligated $C_{4}$ ligand $C(15)-C(16)-C(17)-C(18)$, which is associated with a $\mathrm{WOs}_{2}$ triangle via an $\eta^{4}$ interaction, can also be viewed as a derivative of a $\mu_{3}-\eta^{2}$ vinylidene. Therefore the vinylidene $\mathrm{C}(15)-\mathrm{C}(16)$ backbone, derived from the acetylide ligand, is coordinated to the $\operatorname{Os}(1)-W$ edge via a $\sigma$-bond and $\pi$-bonded to the $\operatorname{Os}(3)$ atom via an $\eta^{2}$ interaction. The $\mathrm{C}_{2}$ substituent $C(17)-C(18)$, derived from the alkyne, is linked to the $\beta$-carbon of the vinylidene and the W atom via a $\sigma$-bond and coordinated to the $\operatorname{Os}(3)$ atom via a $\pi$-bond. Alternatively, the molecule can be considered to adopt a $\mathrm{M}_{4} \mathrm{C}$ closo trigonal bipyramidal geometry with atoms $\mathrm{Os}(2)$ and $\mathrm{C}(15)$ located at the axial positions, and atoms $\mathrm{Os}(1), \mathrm{Os}(3)$ and W on the equatorial plane. In this case, the $\mathrm{C}_{4}$ hydrocarbyl ligand is considered to be a 1,3 -disubstituted allyl moiety linked to $\mathrm{C}(15)$ and W atoms via two $\sigma$-bonds and $\pi$-bonded to the third $\mathrm{Os}(3)$ atom by an $\eta^{3}$ interaction.

Reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Me}_{2}\right)$ with $\mathrm{Cp}{ }^{*} W(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CPh}$
When triosmium complex $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Me}_{2}\right)$ was reacted with acetylide complex $\mathrm{Cp}{ }^{\star} \mathrm{W}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CPh}$ under similar conditions, we isolated five heterometallic
complexes generated via 1:1 combination of starting materials. As indicated by the IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, the first two complexes, $\mathrm{Cp}^{*} \mathrm{WOs}_{3}(\mathrm{CO})_{9}[\mathrm{CC}(\mathrm{Ph})$ $\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})](1 \mathrm{e})$ and $\mathrm{Cp}^{\star} \mathrm{WOs}_{3}(\mathrm{CO})_{9}(\mathrm{CCMeCMe})\left(\mu_{3}-\mathrm{CPh}\right)(3 e)$, are analogous to the derivatives 1 and 3 mentioned previously. The other three complexes $\mathrm{Cp}^{\star} \mathrm{WOs}_{3}(\mathrm{CO})_{9}\left(\mathrm{C}_{2} \mathrm{Me}_{2}\right)\left(\mu_{3}-\mathrm{CCPh}\right)$ (4), $\mathrm{Cp}^{\star} \mathrm{WOs}_{3}(\mathrm{CO})_{9}\left(\mathrm{C}_{2} \mathrm{Me}_{2}\right)\left(\mu_{4}-\mathrm{CCPh}\right)$ (5) and $\mathrm{Cp}^{*} \mathrm{WOs}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CPh}\right)[\mathrm{CC}(\mathrm{Me}) \mathrm{C}(\mathrm{Me}) \mathrm{CO}]$ (6) were newly observed in this system. Complex 1e was identified by its IR spectrum, whereas complex 3 e is assigned according to the IR and ${ }^{13} \mathrm{C}$ NMR data. Consistent with the established structure of $\mathbf{3 a}$ and $\mathbf{3 b}$, the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 e}$ shows seven $\mathrm{Os}-\mathrm{CO}$ resonances at $\delta 187.8,185.6,181.3,180.2,177.2,176.2$ (3C), 172.7 but no signal for $\mathrm{W}-\mathrm{CO}$ ligand. The four ligated carbon atoms appear at $\delta 239.5(J(\mathrm{~W}-\mathrm{C})=111$ $\mathrm{Hz}), 195.1,159.2(J(\mathrm{~W}-\mathrm{C})=15 \mathrm{~Hz})$, and $129.8(J(W-C)=31 \mathrm{~Hz})$ which are assigned to the alkylidyne ( $\mu_{3}-\mathrm{CPh}$ ) carbon [9] and $\alpha, \gamma$ and $\beta$-carbons of the $\mathrm{C}_{3}$ hydrocarbon ligand (CCMeCMe), respectively. The ${ }^{13} \mathrm{C}$ NMR spectra of 4,5 and 6 were also measured but discussion of the results is deferred until after the X-ray diffraction data, described below. The ${ }^{1} \mathrm{H}$ NMR data of 4,5 and 6 confirm only the presence of equimolar ligated butyne and acetylide but are unable to delineate the detailed structure of these complexes.

## Crystal structure and ${ }^{13} \mathrm{C}$ NMR identification of 4

The structure of 4 was determined by a single-crystal X-ray diffraction study. As shown in Fig. 2, the molecule consists of a $\mathrm{WOs}_{3}$ core of a butterfly arrangement, with $\operatorname{Os}(2)$ and W defining the wing-tip positions and $\mathrm{Os}(1)$ and $\mathrm{Os}(3)$ atoms, the hinge positions; the dihedral angle of the butterfly framework is $135.59(2)^{\circ}$. The acetylide and the butyne moieties are not coupled. The acetylide ligand occupies the open face via a $\mu_{4}-\eta^{2}$-bonding interaction with its $\alpha$-carbon bound to the $\mathrm{WOs}_{2}$ triangle with bond distances $\mathrm{W}-\mathrm{C}(14)=1.989(9) \AA, \mathrm{Os}(1)-\mathrm{C}(14)=2.121(8)$ $\AA$ and $\mathrm{Os}(3)-\mathrm{C}(14)=2.248(8) \AA$, and with the $\beta$-carbon atom linked to $\mathrm{Os}(1)$ and $\mathrm{Os}(2)$ atoms with bond distances $\mathrm{Os}(1)-\mathrm{C}(15)=2.339(9) \AA$ and $\mathrm{Os}(2)-\mathrm{C}(15)=$ 2.08(1) $\AA$. The $\mu_{4}-\eta^{2}$-bonding mode of this acetylide ligand is similar to that of the parent acetylide complex $\mathrm{CpWOs}_{3}(\mathrm{CO})_{11}(\mathrm{CCPh})$, the mixed-metal vinylidene complexes [10] and a $\mathrm{Fe}_{4}$ nitrile complex [11], the crystal structures of which have been previously reported. The ligated butyne moiety, however, is coordinated to the same $\mathrm{WOs}_{2}$ face opposite the acetylide ligand via a conventional $\mu_{3}-\eta^{2}$-mode. As expected, metal-carbon distances of the $\pi$-interactions ( $\mathrm{W}-\mathrm{C}(11)=2.257(9)$ and $\mathrm{W}-\mathrm{C}(12)=2.214(9) \AA$ ) are slightly longer than the respective $\sigma$-interactions $(\mathrm{Os}(1)-\mathrm{C}(11)=2.14(1)$ and $\mathrm{Os}(3)-\mathrm{C}(12)=2.205(9) \AA)$. In accordance with the solid state structure, the ${ }^{13} \mathrm{C}$ NMR spectrum shows, in addition to a signal at $\delta$ $209.9(J(W-C)=172 \mathrm{~Hz})$ due to the terminal $\mathrm{W}-\mathrm{CO}$ ligand, six Os-CO signals at $\delta 188.6,179.9,178.7,178.2,174.6$ and 166.2 with ratio $1: 1: 3: 1: 1: 1$. The $\mu_{4}-\eta^{2}$ acetylide gives two signals at $\delta 226.5(J(\mathrm{~W}-\mathrm{C})=145 \mathrm{~Hz})$ and 151.0 ; the observed chemical shifts agree with data summarized by Carty et al. [12]. Two additional signals at $\delta 184.3(J(W-C)=21 \mathrm{~Hz})$ and $88.1(J(W-C)=36 \mathrm{~Hz})$ with the characteristics of tungsten satellites were also observed; they are assigned to the ligated butyne ligand, because these two carbon atoms are linked directly to the tungsten atom. The large separation of the chemical shift for the ligated alkyne carbons is presumably due to the deshielding effect of the nearby $\mathrm{Cp}^{*}$ ring.


Fig. 2. Molecular structure of 4 , showing the atomic numbering scheme.

## Crystal structure of complex 5

The second new product of the reaction with $\mathrm{Cp}{ }^{\star} \mathrm{W}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CPh}$ is a red-orange complex 5 ; its molecular formula is identical to that of 4 but the crystal structure is different. Needle-shaped crystals were obtained from a layered solution of dichloromethane/hexane at room temperature. The molecular structure and the atomic numbering scheme are presented in Fig. 3 and selected parameters of bond lengths and angles are summarized in Table 7. As indicated in Fig. 3, the molecule has a butterfly $\mathrm{WOs}_{3}$ core arrangement in which the wing-tip tungsten and osmium atoms $\mathrm{Os}(2)$ are capped by a Cp ring and two terminal CO ligands and by three terminal CO ligands, respectively, whereas the atoms $\operatorname{Os}(1)$ and $\operatorname{Os}(3)$ located at the hinge positions are coordinated by only two terminal CO ligands, the dihedrai angle of the butterfly core is $155.28(3)^{\circ}$. All metal-metal bonds are normal, showing metal-metal single-bond lengths in the range 3.024(2)-2.734(2) Å. All CO ligands on the osmium atoms are essentially linear (Os-C-O(mean) $\left.=177(1)^{\circ}\right)$, while the $\mathrm{W}-\mathrm{CO}$ ligands have an average angle $\mathrm{W}-\mathrm{C}-\mathrm{O}=172(1)^{\circ}$.

The arrangement of ligands in 5 is in contrast to that of the ligated acetylide and butyne fragments of complex 4. The carbon atoms of the butyne ligand are linked to the wing-tip $\operatorname{Os}(2)$ atom via $\pi$-bonds and connected to both hinge $\operatorname{Os}(1)$


Fig. 3. Molecular structure of $\mathbf{5}$, showing the atomic numbering scheme.
and $\mathrm{Os}(3)$ atoms via $\sigma$-bonds, indicating the existence of the common $2 \sigma+\pi$ bonding mode. The bonding modes of the butyne ligand are formally identical but the transition metal atoms that support the butyne ligand are different, i.e. the butyne ligand in 5 is coordinated to a triosmium triangle whereas the butyne ligand in 4 resides over the $\mathrm{WOs}_{2}$ face. The acetylide ligand is found to coordinate to the unique $\mathrm{WOs}_{2}$ face with metal-carbon distances $\mathrm{W}-\mathrm{C}(14)=2.23(1)$, $\mathrm{Os}(1)-\mathrm{C}(14)$ $=2.31(1), \mathrm{Os}(3)-\mathrm{C}(14)=1.90(1), \mathrm{Os}(1)-\mathrm{C}(15)=2.18(1)$ and $\mathrm{W}-\mathrm{C}(15)=2.32(1) \AA$; therefore, the mode is best described as a $\mu_{3}-\eta^{2}$ mode, different from the $\mu_{4}$-mode of 4. The phenyl substituent is perpendicular to the $\mathrm{Os}(1)-\mathrm{W}$ vector, presumably due to minimization of the steric interaction with the adjacent CO ligands. The arrangement of this $\mu_{3}-\eta^{2}$ acetylide is similar to that of the related, structurally characterized trinuclear derivative $\mathrm{CpWOs}_{2}(\mathrm{CO})_{8}(\mathrm{CCPh})$ [13].

The ${ }^{13} \mathrm{C}$ NMR data are in accordance with the arrangement of CO and acetylide and butyne ligands. The ${ }^{13} \mathrm{C}$ NMR spectrum at 240 K shows two terminal W-CO signals at $\delta 214.9(J(W-C)=164 \mathrm{~Hz})$ and $210.5(J(W-C)=156 \mathrm{~Hz})$, and six terminal Os-CO resonances at $\delta$ 197.3, 192.9, 192.6, 184.8 (2C), 171.3 and 170.4 as required for the established structure. The signals at $\delta 184.8$ with ratio two may be caused by either an accidental degeneracy or a localized pairwise exchange of


Fig. 4. Molecular structure of $\mathbf{6}$, showing the atomic numbering scheme.
the $\mathrm{Os}(\mathrm{CO})_{2}$ center. The signals for the acetylide and butyne ligands occur at $\delta$ $148.5,78.8,143.1$ and 137.5 , respectively. The assignment of the peaks due to the $\alpha$-carbon of acetylide, ipso-carbon of the phenyl group and the butyne carbons, is questionable because of the small difference of chemical shifts and lack of tungsten-carbon coupling.

## Crystal structure of complex 6

Green single crystals obtained from dichloromethane / hexane at room temperature were suitable for an X-ray diffraction study; the molecular structure is shown in Fig. 4 and selected bond lengths and angles appear in Table 9. The metal framework of this molecule is constituted of a slightly distorted WOs ${ }_{3}$ tetrahedron, with metal-metal distances ranging from $2.879(2)$ to $2.829(1) \AA$. The tungsten atom is coordinated by a Cp and triply bridging CO ligand and the osmium atoms are each coordinated by three, three and two terminal CO ligands, respectively. Two substantially different alkylidyne ligands occupy similar locations. The first, centered on atom $\mathrm{C}(16)$, is bonded to a $\mathrm{WOs}_{2}$ triangle and considered as a normal alkylidyne ligand. This alkylidyne ligand originated from the coordinated acetylide ligand via $\mathrm{C}-\mathrm{C}$ bond scission; the osmium-alkylidyne distances, $\mathrm{Os}(1)-\mathrm{C}(16)=$ $2.17(2)$ and $\mathrm{Os}(3)-\mathrm{C}(16)=2.17(2) \AA$, are equivalent but longer than the tungsten-


Scheme 3.
alkylidyne distance, $\mathrm{W}-\mathrm{C}(16)=1.94(1) \AA$. The observed $\mathrm{W}-\mathrm{C}(16)$ distance is in turn comparable to that of the bridging CO ligand $(W-C(9)=1.97(2) \AA)$ located on the adjacent $\mathrm{WOs}_{2}$ triangle, indicating the existence of some multiple bond character. The second alkylidyne ligand, produced by coupling of the $\alpha$-carbon of the acetylide, the butyne and a carbonyl group, is centered on atom $\mathbf{C}(10)$, spans the third $\mathrm{WOs}_{2}$ face and links to $\mathrm{Os}(2)$ via an additional $\mathrm{Os}-\mathrm{C}(13) \sigma$-interaction to complete a metallocyclic arrangement. Irregularities around $C(10)$ in this ligand are more pronounced than those around $\mathrm{C}(16)$ of the normal alkylidyne ligand. The $W-C(10)$ distance is the shortest (1.95(1) $\AA$ ) and the Os(2)-C(10) distance is $0.1 \AA$ shorter than the $\mathrm{Os}(1)-\mathrm{C}(10)$ distance. The $\mathrm{Os}(2)-\mathrm{C}(10)$ distance is almost equivalent to that of the $\mathrm{Os}(2)-\mathrm{C}(13)$ vector located at a cis, equatorial position, the $\mathrm{C}(10)-\mathrm{Os}(2)-\mathrm{C}(13)$ angle being $77.7(6)^{\circ}$.

From the viewpoint of the $\mathrm{WOs}_{3}$ core arrangement and the distribution of the ligated alkylidynes, complex 6 is related to the butterfly complex $\mathrm{CpWOs}_{3^{-}}$ $(\mathrm{CO})_{10}\left(\mu_{3}-\mathrm{CTol}\right)_{2}(\mu-\mathrm{H})$, synthesized by the reaction of $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}$ and Cp $(\mathrm{CO})_{2} \mathrm{~W}(\mathrm{CTol})$, and the tetrahedral complex $\mathrm{CpWOs}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CTol}\right)_{2} \mathrm{H}$, prepared via subsequent thermally induced CO elimination (Scheme 3) [14]. The complex $\mathrm{CpWOs}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CTol}\right)_{2} \mathrm{H}$ undergoes reversible tetrahedral to butterfly transformation via addition of CO across an open face of the $\mathrm{WOs}_{3}$ cluster core, i.e. the third $\mathrm{WOs}_{2}$ face not occupied by bridging alkylidyne ligands. Unlike these bis-alkylidyne complexes, complex 6 fails to add CO in refluxing toluene to afford a butterfly geometry similar to that of $\mathrm{CpWOs}_{3}(\mathrm{CO})_{10}\left(\mu_{3}-\mathrm{CTol}\right)_{2}(\mu-\mathrm{H})$, because addition of CO across a W -Os edge must require the migration of the acyl ligand from the $\mathrm{Os}(\mathrm{CO})_{2}$ center to the tungsten atom. Thermolysis of 6 under 1 atm CO in toluene solution gave complex 3 e ( $54 \%$ ) by de-insertion of the acyl CO ligand instead. This negative result suggests that the proposed acyl migration process is thermodynamically unfavored.

For complex 6, the ${ }^{13} \mathrm{C}$ NMR data of these ligated hydrocarbons have been assigned unambiguously because their chemical shifts are distinct from the other ${ }^{13} \mathrm{C}$ signals. The Os-CO resonances emerge at $\delta 187.9,178.8,174.0$ (broad) and 173.8 of ratio $1: 1: 3: 3$; the last two signals are due to two $\mathrm{Os}(\mathrm{CO})_{3}$ units undergoing rapid rotation. The resonances for the alkylidyne carbons appear at $\delta$ $282.1(J(W-C)=122 \mathrm{~Hz})$ and $250.6(J(\mathrm{~W}-\mathrm{C})=107 \mathrm{~Hz})$. The carbon atoms of the butyne fragment appear at $\delta 181.1(J(W-C)=15 \mathrm{~Hz})$ and $163.4(J(W-C)=15$ Hz ), whereas the signals for the triply bridging CO ligand and the unique acyl CO ligand appear at $\delta 280.6(J(W-C)=150 \mathrm{~Hz})$ and 204.6 , respectively.

## Summary

Condensation of triosmium alkyne complexes $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{R}_{2}\right), \mathrm{R}=\mathrm{Tol}$ and Me , with mononuclear tungsten acetylide complexes $\mathrm{LW}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CR}^{\prime}, \mathrm{L}=\mathrm{Cp}$ and
$\mathrm{Cp}^{\star}, \mathrm{R}^{\prime}=\mathrm{Ph}$ and ${ }^{\mathrm{t}} \mathrm{Bu}$ generated six heterometallic cluster complexes $1-6$ via $1: 1$ combination of the starting materials. The tetrahedral complexes 1 were formed via coupling of the ligated alkyne with the $\beta$-carbon of the acetylide ligand and were observed in all the cases studied. In contrast, the planar rhomboidal cluster 2, generated via coupling of the ligated alkyne with the $\alpha$-carbon of the acetylide ligand, was isolated only in the reaction between $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Me}_{2}\right)$ and $\mathrm{CpW}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CPh}$ in about $41 \%$ yield. The reactivity of 2 differs greatly from that of the analogous $\mathrm{CpWOs}_{3}(\mathrm{CO})_{10}[\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R}) \mathrm{CC}(\mathrm{Ph})], \mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$ and $\mathrm{CO}_{2} \mathrm{Me}$ containing the electron-withdrawing substituents [4]. On thermolysis, complex 2 loses one CO and affords complex 7 via ortho-metallation of the phenyl substituent and complex 3 a via cleavage of the $\mathrm{C}-\mathrm{C}$ bond of the ligated $\mathrm{C}_{4}$ hydrocarbon fragment, confirming that the alkylidyne and the coordinated $\mathrm{C}_{3}$ hydrocarbon ligand in 3a was generated via prior alkyne-acetylide coupling following by cleavage of a $\mathrm{C}-\mathrm{C}$ bond. This reaction is the only case where we have unambiguously confirmed the origination of $\mathbf{3 a}$. The related derivatives $\mathbf{3 b}$ and $\mathbf{3 e}$ were isolated in low yield from the respective condensation reaction, although we failed to isolate the complexes $\mathbf{2 a}$ and 2 e as intermediates in these two reactions. The reactions of $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Tol}_{2}\right)$ with acetylide complexes $\mathrm{LW}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CR}^{\prime}$ containing a bulky substituent ( $\mathrm{L}=\mathrm{Cp}^{\star}, \mathrm{R}^{\prime}=\mathrm{Ph} ; \mathrm{L}=\mathrm{Cp}, \mathrm{R}^{\prime}={ }^{\mathrm{t}} \mathrm{Bu}$ ), in refluxing toluene afforded only one cluster complex 1c and 1d, respectively.

For the reaction between $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{Me}_{2}\right)$ and $\mathrm{Cp}{ }^{*} \mathrm{~W}(\mathrm{CO})_{3} \mathrm{C} \equiv \mathrm{CPh}$, in addition to the expected complexes 1 e and 3 e , we observed the formation of three new complexes 4,5 and 6. The X-ray structural determination reveals that the butyne and acetylide ligands in butterfly complexes 4 and 5 remain as two uncoupled entities. Complexes 4 and 5 are not the precursors for the formation of other cluster complexes, since pyrolysis of these two complexes in refluxing toluene failed to produce $\mathbf{1 e}$ or $\mathbf{2 e}$, but we have isolated a trace amount of $\mathbf{3 e}$ (about $2 \%$ ) during the thermolysis of 4 in refluxing toluene for 2 h . The major, isolable cluster complexes are the unreacted starting material 4 ( $50 \%$ ) and an unknown decarbonylation product ( $36 \%$ ). Finally, complex 6 possesses a tetrahedral metal skeleton with two triply bridging alkylidyne ligands and a triply bridging CO ligand coordinated to the $\mathrm{WOs}_{2}$ triangles. We believe that the formation of alkylidyne ligands occurs via a $\mathrm{C}-\mathrm{C}$ bond scission process, except that a CO ligand has to insert into the Os-C linkage of the ligated butyne fragment, affording the observed, cyclic $\mathrm{CC}(\mathrm{Me}) \mathrm{C}(\mathrm{Me}) \mathrm{CO}$ arrangement. Consequently, complex 6 may be formed via the formation of an intermediate with a linear CPhCCMeCMe or CPhCCMeCMeCO linkage similar to that observed in complex 2. However, this possibility remains an unconfirmed hypothesis because pyrolsis of 2 in refluxing toluene gave only $\mathbf{3 b}$ and 7 as the isolable products. Furthermore, thermolysis of 6 under 1 atm of CO atmosphere, fails to afford the expected CO addition reaction but leads to the de-insertion of the acyl CO fragment and formation of 3 e in $54 \%$ yield, suggesting that complex 3 e is a thermodynamic product of the reaction.

## Acknowledgment

We thank the National Science Council of the Republic of China for financial support (Grant No. NSC81-0208-M007-89).

## References

1 (a) D.-K. Hwang, Y. Chi, S.-M. Peng and G.-H. Lee, J. Organomet. Chem., 389 (1990) C7; (b) C.-H. Wu, Y. Chi, S.-M. Peng and G.-H. Lee, J. Chem. Soc., Dalton Trans., (1990) 3025; (c) Y. Chi, S.-H. Chuang, L.-K. Liu and Y.-S. Wen, Organometallics, 10 (1991) 2485; (d) Y. Chi, C.-H. Wu, S.-M. Peng and G.-H. Lee, Organometallics, 10 (1991) 1676.
2 (a) E. Roland, W. Bernhardt and H. Vahrenkamp, Chem. Ber., 119 (1986) 256; (b) W. Bernhardt and H. Vahrenkamp, Organometallics, 5 (1986) 2388; (c) A.J. Deeming, S. Donovan-Mtunzi and K. Hardcastle, J. Chem. Soc., Dalton Trans., (1986) 543; (d) H. Vahrenkamp, Pure Appl. Chem., 61 (1989) 1777; (e) P.M. Fritz, K. Polborn, M. Steimann and W. Beck, Chem. Ber., 122 (1989) 889; (f) M. Akita, M. Terada, S. Oyama and Y. Moro-oka, Organometallics, 9 (1990) 816.

3 Y. Chi, G.-H. Lee, S.-M. Peng and C.-H. Wu, Organometallics, 8 (1989) 1574.
4 Y. Chi, C.-H. Wu, S.-M. Peng and G.-H. Lee, Organometallics, 9 (1990) 2305.
5 Y. Chi, H.-F. Hsu, S.-M. Peng and G.-H. Lec, J. Chem. Soc., Chem. Commun., (1991) 1023.
6 Y. Chi, S.-F. Hsu, S.-M. Peng and G.-H. Lee, J. Chem. Soc., Chem. Commun., (1991) 1019.
7 B.F.G. Johnson, R. Khattar, J. Lewis, P.R. Raithby and D.N. Smit, J. Chem. Soc., Dalton Trans., (1988) 1421.

8 M.I. Bruce, M.G. Humphrey, J.G. Matisons, S.K. Roy and A.G. Swincer, Aust. J. Chem., 37 (1984) 1955.

9 J. Evans and S.C. McNulty, J. Chem. Soc., Dalton Trans., (1984) 79.
10 (a) A.J. Carty, N.J. Taylor, E. Sappa and A. Tiripicchio, Inorg. Chem., 22 (1983) 1871; (b) A. Brun, G.M. Dawkins, M. Green, R.M. Mills, J.Y. Salaün, F.G.A. Stone and P. Woodward, J. Chem. Soc., Dalton Trans., (1983) 1357; (c) J.C. Jeffery, B.F.G. Johnson, J. Lewis, P.R. Raithby and D.A. Welch, J. Chem. Soc., Chem. Commun., (1986) 318; (d) S. Attali and R. Mathieu, J. Organomet. Chem., 291 (1985) 205.

11 E. Keller and D. Wolters, Chem. Ber., 117 (1984) 1572.
12 A.J. Carty, A.A. Cherkas and L.II. Randall, Polyhedron, 7 (1988) 1045.
13 (a) Y. Chi, G.-H. Lee, S.-M. Peng and B.-J. Liu, Polyhedron, 8 (1989) 2003; (b) D.-K. Hwang, Y. Chi, S.-M. Peng and G.-H. Lee, Organometallics, 9 (1990) 2709.
14 (a) J.T. Park, J.R. Shapley, M.R. Churchill and C. Bueno, J. Am. Chem. Soc., 105 (1983) 6182; (b) J.T. Park, J.R. Shapley, M.R. Churchill and C. Bueno, Inorg. Chem., 23 (1984) 4476.


[^0]:    Correspondence to: Dr. Y. Chi.
    ${ }^{1}$ For inquiries concerning the X -ray crystallographic work.

[^1]:    ${ }^{\text {a }}$ Features common to all determinations: $\lambda\left(\right.$ Mo- $\left.K_{\alpha}\right)=0.70930 \AA$ A Nonius CAD-4 diffractometer; temperature, 297 K ; scan method, $\theta$ - $2 \theta$ scan mode; absorption

